| [1] | 郝文涛,张亚军,杨星团,等. 小型一体化全功率自然循环压水堆NHR200-Ⅱ技术特点及热力市场应用分析[J]. 清华大学学报:自然科学版,2021, 61(4): 322-328. | 
		
				| [2] | 张作义, 张亚军, 贾海军. 低温核供热堆关键技术[M]. 上海: 上海交通大学出版社, 2023: 421. | 
		
				| [3] | 苏光辉,张金玲,郭玉君,等. 海洋条件对船用核动力堆余热排出系统特性的影响[J]. 原子能科学技术,1996, 30(6): 487-491. | 
		
				| [4] | ZHANG Y P, QIU S Z, SU G H, et al. Design and transient analyses of emergency passive residual heat removal system of CPR1000[J]. Nuclear Engineering and Design, 2012, 242: 247-256. doi:  10.1016/j.nucengdes.2011.09.036 | 
		
				| [5] | WU Y W, SU G H, QIU S Z, et al. Development of a thermal–hydraulic analysis software for a passive residual heat removal system[J]. Annals of Nuclear Energy, 2012, 48: 25-39. doi:  10.1016/j.anucene.2012.05.012 | 
		
				| [6] | WANG M J, MANERA A, PETROV V, et al. Passive decay heat removal system design for the integral inherent safety light water reactor (I2S-LWR)[J]. Annals of Nuclear Energy, 2020, 145: 106987. doi:  10.1016/j.anucene.2019.106987 | 
		
				| [7] | CHATO J C. Natural convection flows in parallel-channel systems[J]. Journal of Heat Transfer, 1963, 85(4): 339-345. doi:  10.1115/1.3686122 | 
		
				| [8] | ZVIRIN Y. The onset of flows and instabilities in a thermosyphon with parallel loops[J]. Nuclear Engineering and Design, 1986, 92(2): 217-226. doi:  10.1016/0029-5493(86)90248-7 | 
		
				| [9] | TAKEDA T, KAWAMURA H, SEKI M. Natural circulation in parallel vertical channels with different heat inputs[J]. Nuclear Engineering and Design, 1987, 104(2): 133-143. doi:  10.1016/0029-5493(87)90294-9 | 
		
				| [10] | GARTIA M R, PILKHWAL D S, VIJAYAN P K, et al. Analysis of metastable regimes in a parallel channel single phase natural circulation system with RELAP5/MOD3.2[J]. International Journal of Thermal Sciences, 2007, 46(10): 1064-1074. doi:  10.1016/j.ijthermalsci.2006.11.016 | 
		
				| [11] | GARTIA M R, PILKHWAL D S, VIJAYAN P K, et al. Metastable regimes: a parametric study in reference to single-phase parallel channel natural circulation systems[C]//14th International Conference on Nuclear Engineering. Miami, Florida, USA: ASME, 2006: 63-74. | 
		
				| [12] | SANDERS J. Stability of single-phase natural circulation with inverted U-tube steam generators[J]. Journal of Heat Transfer, 1988, 110(3): 735-742. doi:  10.1115/1.3250553 | 
		
				| [13] | JEONG J J, HWANG M, LEE Y J, et al. Non-uniform flow distribution in the steam generator U-tubes of a pressurized water reactor plant during single- and two-phase natural circulations[J]. Nuclear Engineering and Design, 2004, 231(3): 303-314. doi:  10.1016/j.nucengdes.2004.02.002 | 
		
				| [14] | 杨瑞昌,刘京宫,刘若雷,等. 自然循环蒸汽发生器倒U型管内倒流特性研究[J]. 工程热物理学报,2008, 29(5): 807-810. | 
		
				| [15] | 章德,陈文振,王少明. 管长对UTSG倒流管空间分布的影响分析[J]. 核动力工程,2012, 33(3): 33-37. | 
		
				| [16] | HAO J L, CHEN W Z, ZHANG D. Effect of U-tube length on reverse flow in UTSG primary side under natural circulation[J]. Annals of Nuclear Energy, 2013, 56: 66-70. doi:  10.1016/j.anucene.2013.01.014 | 
		
				| [17] | YANG B, WANG C, LI X J. Analysis of single phase flow instability in U-tubes of steam generator[J]. Annals of Nuclear Energy, 2017, 109: 180-184. doi:  10.1016/j.anucene.2017.05.028 | 
		
				| [18] | XU Z G, JI H R, HONG G, et al. Investigation on the role of mass flow rate in UTSG reverse flow under natural circulation condition[J]. Annals of Nuclear Energy, 2019, 132: 763-772. doi:  10.1016/j.anucene.2019.07.008 | 
		
				| [19] | CONG T L, CHEN Y R, LI X J. Three-dimensional methodology to predict reversed flow in primary side of U-tube steam generator[J]. Progress in Nuclear Energy, 2021, 138: 103841. doi:  10.1016/j.pnucene.2021.103841 | 
		
				| [20] | LI M R, HAO J L, CHEN W Z, et al. Study on NC in primary loop and reverse flow in SG during SBO combining with SBLOCA[J]. Progress in Nuclear Energy, 2021, 141: 103983. doi:  10.1016/j.pnucene.2021.103983 | 
		
				| [21] | 华绍曾, 杨学宁. 实用流体阻力手册[M]. 北京: 国防工业出版社, 1985: 660. |