高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Fe-H2O、Cr-H2O、Zr-H2O体系的高温电位-pH理论计算

杨旸 杨雨 陈云明 曹骐 熊伟 鲁芸芸 伍晓勇

杨旸, 杨雨, 陈云明, 曹骐, 熊伟, 鲁芸芸, 伍晓勇. 基于Fe-H2O、Cr-H2O、Zr-H2O体系的高温电位-pH理论计算[J]. 核动力工程, 2022, 43(1): 110-115. doi: 10.13832/j.jnpe.2022.01.0110
引用本文: 杨旸, 杨雨, 陈云明, 曹骐, 熊伟, 鲁芸芸, 伍晓勇. 基于Fe-H2O、Cr-H2O、Zr-H2O体系的高温电位-pH理论计算[J]. 核动力工程, 2022, 43(1): 110-115. doi: 10.13832/j.jnpe.2022.01.0110
Yang Yang, Yang Yu, Chen Yunmin, Cao Qi, Xiong Wei, Lu Yunyun, Wu Xiaoyong. Theoretical Calculation of High Temperature Potential-pH Based on Fe-H2O, Cr-H2O and Zr-H2O Systems[J]. Nuclear Power Engineering, 2022, 43(1): 110-115. doi: 10.13832/j.jnpe.2022.01.0110
Citation: Yang Yang, Yang Yu, Chen Yunmin, Cao Qi, Xiong Wei, Lu Yunyun, Wu Xiaoyong. Theoretical Calculation of High Temperature Potential-pH Based on Fe-H2O, Cr-H2O and Zr-H2O Systems[J]. Nuclear Power Engineering, 2022, 43(1): 110-115. doi: 10.13832/j.jnpe.2022.01.0110

基于Fe-H2O、Cr-H2O、Zr-H2O体系的高温电位-pH理论计算

doi: 10.13832/j.jnpe.2022.01.0110
详细信息
    作者简介:

    杨 旸(1991—),女,实习研究员,现从事回路水化学腐蚀与防护工作,E-mail: m13984407381@163.com

  • 中图分类号: TL34

Theoretical Calculation of High Temperature Potential-pH Based on Fe-H2O, Cr-H2O and Zr-H2O Systems

  • 摘要: 本文从热力学角度出发,利用能斯特方程进行计算,研究了423、573 K温度条件下Fe-H2O体系、Cr-H2O体系及Zr-H2O体系的电位-pH图(E-pH图),从理论上说明了铁、铬、锆3种反应堆结构材料的主要组成元素在高温高压水中,受电位、pH影响的腐蚀行为倾向,为后续在堆内水化学环境中进行材料电化学腐蚀试验研究以预防材料的腐蚀、延长材料的使用寿命提供了数据参考。

     

  • 图  1  Fe-H2O体系的E-pH图

    Figure  1.  E-pH Diagrams of Fe-H2O System

    图  2  Zr-H2O体系的E-pH图

    Figure  2.  E-pH Diagrams of Zr-H2O System

    图  3  Cr-H2O体系的E-pH图

    Figure  3.  E-pH Diagrams of Cr-H2O System

    表  1  298 K常见物质的热力学数据[9]

    Table  1.   Thermodynamic Data of Common Substances at 298 K   

    物质${ {\Delta } }G_{298}^{ {\text{θ} } }$/(KJ·mol−1)$S_{ {\text{298} } }^{ {\text{θ} }}$/(J·K−1·mol−1)CP/(J·K−1·mol−1
    H20130.6828.836
    O20205.15229.378
    H2O−237.1469.9575.351
    H+000
    e065.2850
    下载: 导出CSV

    表  2  Fe-H2O体系的主要E-pH反应式

    Table  2.   Main E-pH Equations of Fe-H2O System

    序号反应式
    (a)O2+4H++4e=2H2O
    (b)2H++2e=H2
    1Fe2++H2O=FeOH++H+
    2Fe2++2H2O=Fe(OH)2++2H++e
    33Fe2O3+2H++2e=2Fe3O4+H2O
    42Fe(OH)2+=Fe2O3+H2O+2H+
    5Fe2++2e=Fe
    6HFeO2+3H++2e=Fe+2H2O
    下载: 导出CSV

    表  3  不同温度下Fe-H2O体系主要反应式的E-pH计算式

    Table  3.   E-pH Calculation Formula of Main Equations of Fe-H2O System at Different Temperatures

    序号计算式
    423 K573 K
    (a)E=1.209−0.084pH+0.0211lgaO2E=1.116−0.114pH+0.0281lgaO2
    (b)E=0.082−0.084pH−0.042lgaH2E=0.103−0.114pH−0.057lgaH2
    1pH=4.11+lg(FeOH+/Fe2+)pH=2.55+lg(FeOH+/Fe2+)
    2E=1.274−0.1679pH+0.839lg[Fe(OH)2+/Fe2+]E=1.32−0.2274pH+0.1137lg[Fe(OH)2+/Fe2+]
    3E=0.28−0.084pHE=0.29−0.114pH
    42pH=−16.74−lg{[Fe(OH)2+]2}2pH=−15.67−lg{[Fe(OH)2+]2}
    5E=−0.307+lg(Fe2+)E=−0.272+lg(Fe2+)
    6E=0.497−0.13pH+0.042lg(HFeO2)E=0.398−0.17pH+0.057lg(HFeO2)
      表中离子符号表示该离子的浓度
    下载: 导出CSV

    表  4  Zr-H2O体系的E-pH反应式

    Table  4.   E-pH Equations of Zr -H2O System

    序号反应式
    (a)2H++2e=H2
    (b)2H2O=O2+4H++4e
    1Zr4++H2O=ZrO2++2H+
    2ZrO2++2H2O=HZrO3+3H+
    3Zr+2H2O=ZrO2+4H++4e
    4Zr4++2H2O=ZrO2+4H+
    5ZrO2++H2O=ZrO2+2H+
    6ZrO2+H2O=HZrO3+H+
    7Zr=Zr4++4e
    8Zr+H2O=ZrO2++2H++4e
    9Zr+3H2O=HZrO3+5H++4e
    下载: 导出CSV

    表  5  Zr-H2O体系的E-pH计算式

    Table  5.   E-pH Calculation Formula of Zr-H2O System

    序号反应式
    423 K573 K
    1 2pH=3.955+lg(Zr4+/ZrO2+) 2pH=1.027+lg(Zr4+/ZrO2+)
    2 3pH=−19.857+lg(ZrO2+/HZrO3) 3pH=−5.659+lg(ZrO2+/HZrO3)
    3 E=1.336−0.084pH-0.021lg(Zr/ZrO2) E=1.445−0.114pH−0.028lg(Zr/ZrO2)
    4 4pH=−3.361+lg(Zr4+/ZrO2) 4pH=8.08+lg(Zr4+/ZrO2)
    5 2pH=−7.316+lg(ZrO2+/ZrO2) 2pH=6.96+lg(ZrO2+/ZrO2)
    6 pH=−12.542+lg(ZrO2/HZrO3) pH=−12.62+lg(ZrO2/HZrO3)
    7 E=1.41−0.021lg(Zr/Zr4+) E =1.22−0.028lg(Zr/Zr4+)
    8 E=1.489−0.042pH−0.021lg(Zr/ZrO2+) E=1.25−0.057pH−0.028lg(Zr/ZrO2+)
    9 E=1.073−0.105pH−0.021lg(Zr/HZrO3) E=1.086−0.142pH−0.028lg(Zr/HZrO3)
    (a) E=−0.084pH E=0.114pH
    (b) E=−1.282−0.084pH E=−1.367−0.1144pH
      表中离子符号表示该离子的浓度
    下载: 导出CSV

    表  6  Cr-H2O体系的E-pH反应式

    Table  6.   E-pH Equations of Cr-H2O System

    序号反应式
    (a) O2+4H++4e→2H2O
    (b) 2H++2e→H2
    1 Cr2++2e→Cr(s)
    2 Cr3++e→Cr2+
    3 H2CrO4+6H++3e→Cr3++4H2O
    4 HCrO4+7H++3e→Cr3++4H2O
    5 CrO42-+4H++3e→Cr(OH)4
    6 H2CrO4→HCrO4+H+
    7 HCrO4→CrO4++H+
    8 CrO42-+8H++3e→Cr3++4H2O
    下载: 导出CSV

    表  7  Cr-H2O体系的E-pH计算式

    Table  7.   E-pH Calculation Formula of Cr-H2O System

    序号计算式
    423 K573 K
    (a) E=1.21−0.084pH+0.02lgPO2 E=1.37−0.11pH+0.03lgPO2
    (b) E=−0.084pH−0.042lgPH2 E=−0.11pH−0.06lgPH2
    1 E=−0.817+0.042lgCr2+ E=−0.71+0.06lgCr2+
    2 E=−0.17−0.084lg(Cr3+/Cr2+) E=0.14+0.11lg(Cr3+/Cr2+)
    3 E=1.26−0.168pH+0.028lg(H2CrO4/Cr3+) E=1.14−0.22pH+0.04lg(H2CrO4/Cr3+)
    4 E=1.31−0.196pH+0.028lg(HCrO4/Cr3+) E=1.29−0.26pH+0.33lg(HCrO4/Cr3+)
    5 E=0.96−0.112pH+0.028lg[CrO42−/Cr(OH)4] E=1.06−0.15pH+0.04lg[CrO42−/Cr(OH)4]
    6 pH=−2.03+lg(H2CrO4/HCrO4) pH=4.02+lg(H2CrO4/HCrO4)
    7 E=1.52−0.224 pH+0.028 lg(CrO42−/Cr3+) E=1.62−0.29pH+0.04lg(CrO42−/Cr3+)
      表中离子符号表示该离子的浓度
    下载: 导出CSV
  • [1] ALLEN T R, KONINGS R J M, MOTTA A T. Corrosion of zirconium alloys[J]. Comprehensive Nuclear Materials, 2012(5): 49-68.
    [2] COUET A, MOTTA A T, COMSTOCK R J. Effect of alloying elements on hydrogen pickup in zirconium alloys[C]//Proceedings of the 17th International Symposium on Zirconium in the Nuclear Industry. Andhra Pradesh, India: ASTM International, 2015.
    [3] MOTTA A T, COUET A, COMSTOCK R J. Corrosion of zirconium alloys used for nuclear fuel cladding[J]. Annual Review of Materials Research, 2015, 45: 311-343. doi: 10.1146/annurev-matsci-070214-020951
    [4] FONTANA M G. Corrosion engineering[M]. New York: McGraw-Hill, 1986: 67.
    [5] NATISHAN P. Corrosion and corrosion control[M]. New York: John Wiley & Sons, Inc. , 2002: 123-124.
    [6] ANDERKO A, SANDERS S J, YOUNG R D. Real-solution stability diagrams: a thermodynamic tool for modeling corrosion in wide temperature and concentration ranges[J]. Corrosion, 1997, 53(1): 43-53. doi: 10.5006/1.3280432
    [7] POURBAIX M. Atlas of electrochemical equilibria in aqueous solutions[M]. Houston, Texas: National Association of Corrosion Engineers, 1974: 5-6.
    [8] 陈小文,白新德,邓平晔,等. 升温条件下Zr-H2O系电位-pH平衡图[J]. 稀有金属材料与工程,2004, 33(7): 710-713. doi: 10.3321/j.issn:1002-185X.2004.07.009
    [9] YOU H X, XU H B, ZHANG Y, et al. Potential-pH diagrams of Cr-H2O system at elevated temperatures[J]. Transaction of Nonferrous Metals Society of China, 2010, 20(S1): s26-s31.
    [10] BIERNAT R J, ROBINS R G. High-temperature potential/pH diagrams for the iron-water and iron-water-sulphur systems[J]. Electrochimica Acta, 1972, 17(7): 1261-1283. doi: 10.1016/0013-4686(72)80013-6
    [11] BEVERSKOG B, PUIGDOMENECH I. Revised pourbaix diagrams for iron at 25-300℃[J]. Corrosion Science, 1996, 38(12): 2121-2135. doi: 10.1016/S0010-938X(96)00067-4
    [12] KAYE M H, THOMPSON W T. Computation of pourbaix diagrams at elevated temperature[M]//REVIE R W. Uhlig's Corrosion Handbook. 3rd ed. New York: John Wiley & Sons, 2011.
    [13] BEVERSKOG B, PUIGDOMENECH I. Revised pourbaix diagrams for chromium at 25-300℃[J]. Corrosion Science, 1997, 39(1): 43-57. doi: 10.1016/S0010-938X(97)89244-X
    [14] 那璇,邹德宁,杨欢,等. 基于Fe-Cr-Cl-H2O体系E-pH图的时效Cr22Ni5Mo3不锈钢的电化学性能研究[J]. 材料保护,2018, 51(9): 18-23,79.
  • 加载中
图(3) / 表(7)
计量
  • 文章访问数:  675
  • HTML全文浏览量:  236
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-02
  • 录用日期:  2021-12-07
  • 修回日期:  2021-12-22
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回