Neutronics Analysis on MOX assemblies for HPR1000 Cores
-
摘要: 结合我国核能发展需求,以华龙一号堆型作为研究对象,利用SCIENCE软件进行混合氧化物(MOX)燃料组件中子学特性研究,为后续华龙一号机组大规模装载MOX燃料组件,实现闭式燃料循环奠定理论基础。针对CF3燃料组件初始富集度、卸料燃耗及堆芯运行参数等影响因素开展数值分析,评价组件布置方案、钚向量、钚总装量(钚含量)及基体铀组分等因素对MOX燃料组件的反应性等关键中子学参数的影响。数值结果表明,MOX组件采用周边布置方案时,有利于实现更好的反应性控制能力,从而降低反应性控制压力,有利于更好地利用现有的堆芯设计条件,实现钚资源的利用。在增加燃料棒中易裂变核素组分时,导致组件能谱硬化,使得反应性反馈能力和反应性控制能力进一步减弱。针对现役华龙一号型堆芯核设计方案,可能需要增加额外反应性控制手段,实现燃耗过程中MOX燃料组件的反应性控制。
-
关键词:
- 华龙一号(HPR1000) /
- 混合氧化物(MOX) /
- 压水堆 /
- CF3燃料组件
Abstract: In combination with the development needs of nuclear energy in China, the neutronics characteristics of mixed oxide (MOX) fuel assemblies are studied using SCIENCE software with HPR1000 reactor as the research object, which lays a theoretical foundation for the subsequent large-scale loading of MOX fuel assemblies in HPR1000 unit and the realization of closed fuel cycle. Numerical analysis is carried out on the influencing factors such as initial enrichment, discharge burnup and core operation parameters of CF3 fuel assembly, and the effects of assembly layout, plutonium vector, total plutonium loading and matrix uranium composition on key neutronics parameters such as reactivity of MOX fuel assembly are evaluated. The numerical results show that when MOX modules are arranged around, it is conducive to achieving better reactivity control capability, reducing reactivity control pressure, making better use of existing core design conditions, and realizing the utilization of plutonium resources. When the fission nuclide composition in the fuel rod is increased, the energy spectrum of the assembly hardens, and the reactivity feedback ability and reactivity control capability are further weakened. For the design scheme of HPR1000 reactor core, additional reactivity control means may be required to realize the reactivity control of MOX fuel assembly during burnup.-
Key words:
- HPR1000 /
- Mixed oxide (MOX) /
- PWR /
- CF3 fuel assembly
-
表 1 MOX燃料组件中不同燃料棒的Pu总装量
Table 1. Total Pu Loading of Different Fuel Rods in MOX Fuel Assembly
类型 高钚燃料棒Pu总装量/% 中钚燃料棒Pu总装量/% 低钚燃料棒Pu总装量/% 高Pu含量方案 19.10 14.40 7.50 低Pu含量方案 14.30 9.30 6.45 -
[1] 李小生,靳忠敏. MOX燃料对压水堆堆芯性能影响研究[J]. 原子能科学技术,2013, 47(S2): 583-587. [2] PROVOST J L, SCHRADER M, NOMURA S. MOX fuel fabrication and utilisation in LWRs worldwide[C]//Proceedings of MOX Fuel Cycle Technologies for Medium and Long-Term Deployment. Vienna: IAEA, 1999: 17-21. [3] RAUCK S. SCIENCE V2 nuclear code package-qualification: NFPSD/DC/89[R]. Garching, France: Framatome ANP, 2004. [4] GAULD I C. MOX cross-section libraries for ORIGEN-ARP: ORNL/TM-2003/2[R]. Oak Ridge: Oak Ridge National Laboratory, 2003.