高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液态铅铋合金湍流普朗特数及RANS模型优选

邓诗雨 卢涛 邓坚 张喜林 朱大欢

邓诗雨, 卢涛, 邓坚, 张喜林, 朱大欢. 液态铅铋合金湍流普朗特数及RANS模型优选[J]. 核动力工程, 2023, 44(2): 98-103. doi: 10.13832/j.jnpe.2023.02.0098
引用本文: 邓诗雨, 卢涛, 邓坚, 张喜林, 朱大欢. 液态铅铋合金湍流普朗特数及RANS模型优选[J]. 核动力工程, 2023, 44(2): 98-103. doi: 10.13832/j.jnpe.2023.02.0098
Deng Shiyu, Lu Tao, Deng Jian, Zhang Xilin, Zhu Dahuan. Optimization of Turbulent Prandtl Numbers and RANS Models for Liquid Lead-bismuth Eutectic[J]. Nuclear Power Engineering, 2023, 44(2): 98-103. doi: 10.13832/j.jnpe.2023.02.0098
Citation: Deng Shiyu, Lu Tao, Deng Jian, Zhang Xilin, Zhu Dahuan. Optimization of Turbulent Prandtl Numbers and RANS Models for Liquid Lead-bismuth Eutectic[J]. Nuclear Power Engineering, 2023, 44(2): 98-103. doi: 10.13832/j.jnpe.2023.02.0098

液态铅铋合金湍流普朗特数及RANS模型优选

doi: 10.13832/j.jnpe.2023.02.0098
基金项目: 核反应堆系统设计技术重点实验室基金项目(HT-KFKT-24-2021013)
详细信息
    作者简介:

    邓诗雨(1998—),女,硕士研究生,现主要从事流动与传热传质方面的研究,E-mail: dshiyu0711@163.com

    通讯作者:

    卢 涛,E-mail: likesurge@sina.com

  • 中图分类号: TL331;TK124

Optimization of Turbulent Prandtl Numbers and RANS Models for Liquid Lead-bismuth Eutectic

  • 摘要: 工程上常采用RANS湍流模型进行热工水力相关的数值模拟,然而液态铅铋合金(LBE)具有独特的热物性,常规湍流普朗特数模型和RANS湍流模型对其流动与传热模拟的适用性有待研究。为更准确地描述绕丝燃料组件内LBE的流动与换热过程,本文基于大涡模拟对湍流普朗特数模型和RANS湍流模型进行优选。首先,采用四种湍流普朗特数模型对绕丝燃料组件内LBE的流动与传热过程进行大涡模拟,对比分析实验数据和模拟结果并进行模型优选。基于优选的湍流普朗特数模型,评价RANS湍流模型对LBE数值模拟的适用性和准确性。结果表明,Cheng湍流普朗特数模型和SST k-ω模型对LBE流动与传热模拟的准确性和适用性最高。

     

  • 图  1  湍流普朗特数模型示意图

    Figure  1.  Schematic Diagram of Turbulent Prandtl Number Models     

    图  2  网格横截面示意图

    Figure  2.  Schematic Diagram of Grid Cross Section

    图  3  网格无关性验证

    编号1~7表示燃料棒编号;编号1~18表示子通道编号

    Figure  3.  Grid Independence Verification

    图  4  温度监测点位置

    Figure  4.  Location of Temperature Monitoring Points

    图  5  LES结果与Pacio实验结果对比

    R—燃料棒;SCH—子通道;角度为图4中检测点对应的角度

    Figure  5.  Comparison between LES Results and Pacio Experimental Results

    图  6  $P{r_{\rm{t}}}$值与$ \varPhi $值散点图

    Figure  6.  $ P{r_{\text{t}}} $ and $ \varPhi $ Values

    图  7  RANS湍流模型模拟结果与Pacio实验结果对比

    Figure  7.  Comparison between Simulation Results of RANS Turbulence Models and Pacio Experimental Results

    表  1  模型几何参数

    Table  1.   Geometric Parameters of the Model

    参数数值
    燃料棒根数7
    燃料棒直径/mm8.2
    燃料棒节距/mm10.49
    燃料棒长度/mm870
    绕丝直径/mm2.2
    绕丝螺距/mm328
    组件壁面对边距/mm31.6
    下载: 导出CSV

    表  2  网格无关性验证

    Table  2.   Grid Independence Verification

    网格编号第一层网格高度/mm边界层数网格数
    10.01073490176
    20.008125190715
    30.008155949764
    下载: 导出CSV

    表  3  LES结果与Pacio实验结果拟合度

    Table  3.   Fitting Degree between LES Results and Pacio Experimental Results

    对比项拟合度
    Aoki模型Reynolds模型Jischa模型Cheng模型
    z=601.3 mm截面$ {{\varTheta }_{{\text{max}}}} $0.28870.13890.30930.1250
    $ {{\varTheta }_{{\text{min}}}} $0.11250.01640.13750
    $ \varPhi $0.19010.08790.21220.0730
    z=820 mm截面$ {{\varTheta }_{{\text{max}}}} $0.32200.17800.33900.1744
    $ {{\varTheta }_{{\text{min}}}} $0.15630.01040.18560.0104
    $ \varPhi $0.25310.11150.26000.1024
    下载: 导出CSV

    表  4  RANS湍流模型模拟结果与Pacio实验结果拟合度

    Table  4.   Fitting Degree between Simulation Results of RANS Turbulence Models and Pacio Experimental Results

    对比项拟合度
    标准k-ε
    模型
    RNG k-ε
    模型
    SST k-ω
    模型
    RSM
    模型
    z=601.3 mm截面$ {{\varTheta }_{{\text{max}}}} $0.35140.27500.27030.2703
    $ {{\varTheta }_{{\text{min}}}} $0.0313000
    $ \varPhi $0.16890.17130.11720.1699
    z=820 mm截面$ {{\varTheta }_{{\text{max}}}} $0.41670.33330.35000.3167
    $ {{\varTheta }_{{\text{min}}}} $0.01160.040800.0103
    $ \varPhi $0.18950.19070.14240.1763
    下载: 导出CSV
  • [1] DUPONCHEEL M, BRICTEUX L, MANCONI M, et al. Assessment of RANS and improved near-wall modeling for forced convection at low Prandtl numbers based on LES up to Reτ = 2000[J]. International Journal of Heat and Mass Transfer, 2014, 75: 470-482. doi: 10.1016/j.ijheatmasstransfer.2014.03.080
    [2] NATESAN K, SUNDARARAJAN T, NARASIMHAN A, et al. Turbulent flow simulation in a wire-wrap rod bundle of an LMFBR[J]. Nuclear Engineering and Design, 2010, 240(5): 1063-1072. doi: 10.1016/j.nucengdes.2009.12.025
    [3] SAGAUT P. Large eddy simulation for incompressible flows. An introduction[J]. Measurement Science and Technology, 2001, 12(10): 1745-1746.
    [4] AOKI S. A consideration on the heat transfer in liquid metal[J]. Bulletin of the Tokyo Institute of Technology, 1963, 54: 63-73.
    [5] REYNOLDS A J. The prediction of turbulent Prandtl and Schmidt numbers[J]. International Journal of Heat and Mass Transfer, 1975, 18(9): 1055-1069. doi: 10.1016/0017-9310(75)90223-9
    [6] JISCHA M, RIEKE H B. About the prediction of turbulent Prandtl and Schmidt numbers from modeled transport equations[J]. International Journal of Heat and Mass Transfer, 1979, 22(11): 1547-1555. doi: 10.1016/0017-9310(79)90134-0
    [7] CHENG X, TAK N I. Investigation on turbulent heat transfer to lead–bismuth eutectic flows in circular tubes for nuclear applications[J]. Nuclear Engineering and Design, 2006, 236(4): 385-393. doi: 10.1016/j.nucengdes.2005.09.006
    [8] PACIO J, DAUBNER M, FELLMOSER F, et al. Experimental study of heavy-liquid metal (LBE) flow and heat transfer along a hexagonal 19-rod bundle with wire spacers[J]. Nuclear Engineering and Design, 2016, 301: 111-127. doi: 10.1016/j.nucengdes.2016.03.003
    [9] PACIO J, DAUBNER M, FELLMOSER F, et al. Corrigendum to "Experimental study of heavy-liquid metal (LBE) flow and heat transfer along a hexagonal 19-rod bundle with wire spacers"[Nucl. Eng. Des. 301 (2016) 111-127][J]. Nuclear Engineering and Design, 2021, 371: 110928. doi: 10.1016/j.nucengdes.2020.110928
    [10] FAZIO C, SOBOLEV V P, AERTS A, et al. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies[M]. France: Organisation for Economic Co-operation and Development, 2015: 91.
    [11] GAJAPATHY R, VELUSAMY K, SELVARAJ P, et al. CFD investigation of helical wire-wrapped 7-pin fuel bundle and the challenges in modeling full scale 217 pin bundle[J]. Nuclear Engineering and Design, 2007, 237(24): 2332-2342. doi: 10.1016/j.nucengdes.2007.05.003
    [12] JEONG J H, SONG M S, LEE K L. CFD investigation of three-dimensional flow phenomena in a JAEA 127-pin wire-wrapped fuel assembly[J]. Nuclear Engineering and Design, 2017, 323: 166-184. doi: 10.1016/j.nucengdes.2017.08.008
    [13] FEI C, HUAI X L, CAI J, et al. Investigation on the applicability of turbulent-Prandtl-number models for liquid lead-bismuth eutectic[J]. Nuclear Engineering and Design, 2013, 257: 128-133. doi: 10.1016/j.nucengdes.2013.01.005
    [14] MERZARI E, FISCHER P, YUAN H, et al. Benchmark exercise for fluid flow simulations in a liquid metal fast reactor fuel assembly[J]. Nuclear Engineering and Design, 2016, 298: 218-228. doi: 10.1016/j.nucengdes.2015.11.002
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  344
  • HTML全文浏览量:  82
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-08
  • 修回日期:  2022-05-19
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回