高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非结构网格的蒙特卡罗重要性抽样方法研究

舒瀚林 曹良志 贺清明 戴涛 黄展鹏

舒瀚林, 曹良志, 贺清明, 戴涛, 黄展鹏. 基于非结构网格的蒙特卡罗重要性抽样方法研究[J]. 核动力工程, 2023, 44(3): 28-37. doi: 10.13832/j.jnpe.2023.03.0028
引用本文: 舒瀚林, 曹良志, 贺清明, 戴涛, 黄展鹏. 基于非结构网格的蒙特卡罗重要性抽样方法研究[J]. 核动力工程, 2023, 44(3): 28-37. doi: 10.13832/j.jnpe.2023.03.0028
Shu Hanlin, Cao Liangzhi, He Qingming, Dai Tao, Huang Zhanpeng. Study on Monte Carlo Importance Sampling Method Based on Unstructured Mesh[J]. Nuclear Power Engineering, 2023, 44(3): 28-37. doi: 10.13832/j.jnpe.2023.03.0028
Citation: Shu Hanlin, Cao Liangzhi, He Qingming, Dai Tao, Huang Zhanpeng. Study on Monte Carlo Importance Sampling Method Based on Unstructured Mesh[J]. Nuclear Power Engineering, 2023, 44(3): 28-37. doi: 10.13832/j.jnpe.2023.03.0028

基于非结构网格的蒙特卡罗重要性抽样方法研究

doi: 10.13832/j.jnpe.2023.03.0028
详细信息
    作者简介:

    舒瀚林(2000—),男,博士研究生,现主要从事蒙特卡罗-确定论耦合输运计算方面的研究,E-mail: shl266@stu.xjtu.edu.cn

    通讯作者:

    曹良志,E-mail: caolz@xjtu.edu.cn

  • 中图分类号: TL328

Study on Monte Carlo Importance Sampling Method Based on Unstructured Mesh

  • 摘要: 为改善传统的依赖结构网格有限差分离散纵标(SN)程序确定粒子重要性分布的一致性共轭驱动重要抽样(CADIS)方法的建模和计算精度,以进一步提高其处理复杂几何深穿透问题的能力,本文开发了基于SN-间断有限元方法(DFEM)的并行三维非结构网格中子-光子耦合输运计算程序NECP-SUN,并将其作为共轭求解器与蒙特卡罗程序NECP-MCX耦合,研究并实现了全自动的非结构网格CADIS方法。对HBR-2基准题和中国聚变工程试验堆(CFETR)环向场磁体线圈盒快中子注量率的计算结果表明:较传统CADIS方法,非结构网格CADIS方法对复杂几何的适应性更强,取得的结果相对统计偏差更低、更接近实测值;较直接蒙特卡罗计算,非结构网格CADIS方法的品质因子(FOM)提高了1~3个量级。因此,本文研究的非结构网格CADIS方法能够较好地处理复杂几何深穿透问题。

     

  • 图  1  非结构网格CADIS方法流程图

    BREP—边界表示法

    Figure  1.  Flow Chart of Unstructured-Mesh CADIS Method

    图  2  CSG-CAD模型转换流程图

    Figure  2.  Flow Chart of CSG-CAD Model Conversion

    图  3  非结构网格剖分流程图

    Figure  3.  Subdivision Flow Chart of Unstructured Mesh

    图  4  HBR-2基准题的CAD几何模型

    Figure  4.  CAD Model of HBR-2 Benchmark

    图  5  HBR-2基准题的结构网格模型及非结构网格模型

    Figure  5.  The Structural-Mesh Model and Unstructured-Mesh Model of HBR-2 Benchmark

    图  6  局部加密前后的中子剂量仪区域网格

    Figure  6.  Mesh of Radiometric Monitor with/without Local Refinement

    图  7  CFETR 22.5°扇段的CAD模型及非结构网格建模

    Figure  7.  CAD Model and Unstructured Mesh of CFETR 22.5° Sector

    图  8  CFETR的共轭中子注量率分布

    Figure  8.  Adjoint Fluence Rate Distribution of CFETR

    图  9  环向场磁体线圈盒的分段编号

    Figure  9.  The Segment Number of Toroidal Field Coil

    表  1  网格剖分参数及网格数量

    Table  1.   Subdivision Parameters of Meshes and Number of Meshes

    网格剖分方式全局剖分目标区域局部加密
    最小尺寸/cm0.52
    最大尺寸/cm4848
    目标区域尺寸/cm0.5
    网格数量1113428246357
    下载: 导出CSV

    表  2  堆腔中子剂量仪各反应道的比活度及其C/E值

    Table  2.   Specific Activities and C/E of each Reaction Channel of Radiometric Monitor in Reactor Cavity

    计算方法统计量237Np(n,f)137Cs238U(n,f)137Cs58Ni(n,p)58Co54Fe(n,p)54Mn46Ti(n,p)46Sc63Cu(n,α)60Co
    实验测量比活度/(Bq·mg−1)2.24×1018.51×10−11.96×1028.71×1003.31×1002.65×10−1
    MCX比活度/(Bq·mg−1)2.00×1019.24×10−16.86×1017.89×10−1无计数无计数
    C/E0.891.090.350.09无计数无计数
    MCX_Hydra比活度/(Bq·mg−1)1.64×1016.63×10−12.29×1021.00×1014.63×1003.25×10−1
    C/E0.730.781.171.151.401.23
    MCX_SUN比活度/(Bq·mg−1)1.60×1016.40×10−12.20×1029.65×1004.27×1002.87×10−1
    C/E0.710.751.121.111.291.08
    MCX_SUN_Fine比活度/(Bq·mg−1)1.60×1016.39×10−12.17×1029.51×1004.26×1002.84×10−1
    C/E0.710.751.111.091.291.07
    下载: 导出CSV

    表  3  堆腔中子剂量仪各反应道的相对统计偏差和FOM

    Table  3.   Relative Statistical Errors and FOM of each Reaction Channel of Radiometric Monitor in Reactor Cavity

    计算方法统计量237Np(n,f)137Cs238U(n,f)137Cs58Ni(n,p)58Co54Fe(n,p)54Mn46Ti(n,p)46Sc63Cu(n,α)60Co
    MCX相对统计偏差/%37.8697.9785.4999.99100100
    FOM1.57×10−22.35×10−33.08×10−32.25×10−3无实际意义无实际意义
    MCX_Hydra相对统计偏差/%0.210.741.041.182.234.05
    FOM4.97×1014.09×1002.08×1001.60×1004.52×10−11.36×10−1
    MCX_SUN相对统计偏差/%0.491.051.481.731.572.47
    FOM5.14×1001.13×1005.65×10−14.14×10−15.02×10−12.03×10−1
    MCX_SUN_Fine相对统计偏差/%0.320.740.860.981.743.25
    FOM1.37×1012.52×1001.89×1001.43×1004.59×10−11.31×10−1
    下载: 导出CSV

    表  4  环向场磁体线圈盒快中子注量率及其相对统计偏差和FOM

    Table  4.   Value, Relative Statistic Errors and FOM of Fast-Neutron Fluence Rate of Toroidal Field Coil Boxes

    计算方法统计量线圈盒1线圈盒2线圈盒3线圈盒4线圈盒5线圈盒6
    MCX_9快中子注量率/(cm−2·s−1)1.116×1071.154×1074.363×1066.899×1061.479×1063.565×106
    相对统计偏差/%40.1628.9347.7028.3647.7339.61
    FOM5.334×10−31.028×10−23.781×10−31.069×10−23.775×10−35.483×10−3
    MCX_12快中子注量率/(cm−2·s−1)1.474×1072.083×1078.541×1068.172×1061.746×1063.362×106
    相对统计偏差/%5.7636.085.902.735.604.41
    FOM1.857×10−34.737×10−51.773×10−38.275×10−31.966×10−33.165×10−3
    MCX_SUN快中子注量率/(cm−2·s−1)1.563×1072.120×1079.087×1067.878×1061.814×1063.166×106
    相对统计偏差/%3.772.894.023.309.003.19
    FOM1.267×10−12.157×10−11.114×10−11.657×10−12.221×10−21.764×10−1
    下载: 导出CSV
  • [1] 曹良志, 谢仲生, 李云召. 近代核反应堆物理分析[M]. 北京: 中国原子能出版社, 2017: 310-313.
    [2] MUNK M, SLAYBAUGH R N. Review of hybrid methods for deep-penetration neutron transport[J]. Nuclear Science and Engineering, 2019, 193(10): 1055-1089. doi: 10.1080/00295639.2019.1586273
    [3] WAGNER J C, HAGHIGHAT A. Automated variance reduction of Monte Carlo shielding calculations using the discrete ordinates adjoint function[J]. Nuclear Science and Engineering, 1998, 128(2): 186-208. doi: 10.13182/NSE98-2
    [4] MOSHER S W, JOHNSON S R, BEVILL A M, et al. ADVANTG—an automated variance reduction parameter generator: ORNL/TM-2013/416 Rev. 1[R]. Oak Ridge: Oak Ridge National Laboratory, 2015.
    [5] PEPLOW D E. Monte Carlo shielding analysis capabilities with MAVRIC[J]. Nuclear Technology, 2011, 174(2): 289-313. doi: 10.13182/NT174-289
    [6] ALWIN J L, SPENCER J B, FAILLA G A. Criticality accident alarm system analysis using MCNP6.2 constructive solid geometry/unstructured mesh hybrid[Z]. 2019.
    [7] WAREING T A, MCGHEE J M, MOREL J E. ATTILA: a three-dimensional, unstructured tetrahedral mesh discrete ordinates transport code[J]. Transactions of the American Nuclear Society, 1996, 75: 146-147.
    [8] DOMINESEY K A, KOWAL P J, EUGENIO J A, et al. Scientific workflows for MCNP6 and proteus within the neams workbench[C]//International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future. Cambridge: EDP Sciences, 2021: 06052.
    [9] WARNER P, DE OLIVEIRA C R E. Validation of the 3D finite element transport theory code EVENT for shielding applications[J]. Journal of Nuclear Science and Technology, 2000, 37(S1): 466-470.
    [10] MIAO J X, FANG C, WAN C H, et al. Development and preliminary application of deterministic code NECP-FISH for neutronics analysis of fusion-reactor blanket[J]. Annals of Nuclear Energy, 2022, 169: 108943. doi: 10.1016/j.anucene.2021.108943
    [11] REED W H, HILL T R. Triangular mesh methods for the neutron transport equation: Technical Report LA-UR-73-479[R]. Mex: Los Alamos Scientific Laboratory, 1973.
    [12] HE Q M, ZHENG Q, LI J, et al. NECP-MCX: A hybrid Monte-Carlo-Deterministic particle-transport code for the simulation of deep-penetration problems[J]. Annals of Nuclear Energy, 2021, 151: 107978. doi: 10.1016/j.anucene.2020.107978
    [13] REMEC I, KAM F B K. H. B. Robinson-2 pressure vessel benchmark: NUREG/CR-6453; ORNL/TM-13204[R]. Washington: US Nuclear Regulatory Commission, 1998.
    [14] XU L F, CAO L Z, ZHENG Y Q, et al. Development of a new parallel SN code for neutron-photon transport calculation in 3-D cylindrical geometry[J]. Progress in Nuclear Energy, 2017, 94: 1-21. doi: 10.1016/j.pnucene.2016.09.005
    [15] EL-MEHALAWI M, MILLER R A. A database system of mechanical components based on geometric and topological similarity. Part I: representation[J]. Computer-Aided Design, 2003, 35(1): 83-94. doi: 10.1016/S0010-4485(01)00177-4
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  1727
  • HTML全文浏览量:  66
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-26
  • 修回日期:  2022-09-03
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回