高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机器学习的螺旋流动过冷沸腾CHF预测研究

颜建国 郑书闽 郭鹏程 赵莉 王帅 刘坤 朱旭涛

颜建国, 郑书闽, 郭鹏程, 赵莉, 王帅, 刘坤, 朱旭涛. 基于机器学习的螺旋流动过冷沸腾CHF预测研究[J]. 核动力工程, 2023, 44(3): 65-73. doi: 10.13832/j.jnpe.2023.03.0065
引用本文: 颜建国, 郑书闽, 郭鹏程, 赵莉, 王帅, 刘坤, 朱旭涛. 基于机器学习的螺旋流动过冷沸腾CHF预测研究[J]. 核动力工程, 2023, 44(3): 65-73. doi: 10.13832/j.jnpe.2023.03.0065
Yan Jianguo, Zheng Shumin, Guo Pengcheng, Zhao Li, Wang Shuai, Liu Kun, Zhu Xutao. Research on Prediction of Subcooled Flow Boiling CHF for Spiral Flow Based on Machine Learning[J]. Nuclear Power Engineering, 2023, 44(3): 65-73. doi: 10.13832/j.jnpe.2023.03.0065
Citation: Yan Jianguo, Zheng Shumin, Guo Pengcheng, Zhao Li, Wang Shuai, Liu Kun, Zhu Xutao. Research on Prediction of Subcooled Flow Boiling CHF for Spiral Flow Based on Machine Learning[J]. Nuclear Power Engineering, 2023, 44(3): 65-73. doi: 10.13832/j.jnpe.2023.03.0065

基于机器学习的螺旋流动过冷沸腾CHF预测研究

doi: 10.13832/j.jnpe.2023.03.0065
基金项目: 国家自然科学基金项目(51909213);陕西省教育厅科研计划项目(21JY029);陕西高校青年科技创新团队(2020-29);陕西省自然科学基础研究计划项目(2022JM-211)
详细信息
    作者简介:

    颜建国(1987—),男,博士研究生,副教授,主要从事多相流动与传热方面研究,E-mail: jgyan@xaut.edu.cn

  • 中图分类号: TL331;TK124

Research on Prediction of Subcooled Flow Boiling CHF for Spiral Flow Based on Machine Learning

  • 摘要: 过冷沸腾广泛应用于以国际热核聚变实验堆(ITER)为代表的高热流冷却场合。本文聚焦高热流、螺旋流动条件下水的过冷沸腾临界热流密度(CHF)的预测方法,建立了该类工况下的过冷沸腾CHF实验数据库。选用了4种典型机器学习模型:反向传播(BP)神经网络、遗传算法( GA )-BP神经网络、 径向基函数(RBF)神经网络和极限学习机(ELM);利用传统的经验关联式和新兴的机器学习方法对螺旋流动过冷沸腾CHF进行预测研究。经与实验数据库对比,结果表明,相关机器学习模型能够有效预测螺旋流动过冷沸腾CHF,其预测性能相较于传统的经验关联式有大幅提升,其中ELM模型预测效果最优,平均绝对误差和均方根误差分别为2.79%和4.22%。研究成果为高热流螺旋流动过冷沸腾CHF的准确预测提供了新途径。

     

  • 图  1  扭带结构示意图

    Figure  1.  Schematic Diagram of Twisted Tape

    图  2  BP神经网络示意图

    X—输入向量,X=[x1, x2, …, xn];Y—输出向量,Y=[y1, y2, …, yn]

    Figure  2.  Schematic of BP Neural Network

    图  3  GA-BP神经网络程序流程图

    Figure  3.  Flow Chart of GA-BP Neural Network Program

    图  4  RBF神经网络示意图

    Figure  4.  Schematic of RBF Neural Network

    图  5  不同隐含层神经元数目预测性能对比(BP,GA-BP)

    Figure  5.  Prediction Performance of Different Neuron Number in Hidden Layer (BP, GA-BP)

    图  6  不同隐含层神经元数目预测性能对比(ELM)

    Figure  6.  Prediction Performance of Different Neuron Number in Hidden Layer (ELM)

    图  7  预测集的预测值与实验值比较

    Figure  7.  Comparison between the Prediction Set’s Prediction and Experimental Results

    图  8  机器学习模型的预测性能对比

    Figure  8.  Comparison of Prediction Performance of Machine Learning Models

    表  1  高热流条件下内插扭带管的过冷水流动沸腾CHF数据

    Table  1.   CHF Data for Subcooled Water Flow in Twisted-Tape Tubes under High Heat Fluxes

    参数名参数值
    Yan[11]Gambill[18]Tong[19]Hata-Masuzaki[20]Araki[21]Boscary[22]Dedov[9-10]
    内径d/mm96.32.42~6.536710~184
    长径比L/d2070249.9257.145.6~11.55
    扭曲比y2~4121.932.39~4.45324.25~8.25
    压力p/MPa4.21.691.00.80.98~1.491~3.70.7~1
    质量流速G/(kg·m−2·s−1)800078455100~100003845~70134000~200005000~160001100~9900
    临界平衡态含气率xcr−0.07~0.0106−0.15−0.183~−0.152−0.279~−0.111−0.34~−0.256−0.473~−0.13−0.31~−0.18
    临界热流密度qcr/(MW·m−2)10~151318.24~35.789.90~32.3219.8~45.916.8~68.611.6~51
    数据点41552154715
      L—管长
    下载: 导出CSV

    表  2  内插扭带管的高热流CHF经验关联式

    Table  2.   Empirical Correlation of High Heat Flow CHF in Twisted-Tape Tube

    作者关联式应用范围
    Drizius[23]${q_{ {\text{cr, TT} } } } = \dfrac{G}{ { { {(2y)}^{0.1} } } }\left( {\dfrac{ {1.7 \times { {10}^5} } }{\xi } + \dfrac{ {17.3\xi } }{ { {4^{0.01\xi } } } } } \right), \xi=L / d_{\mathrm{h}}$d=1.6 mm, p=0.4~1.4 MPa,
    G=4000~25000 kg/(m²·s), y=1~5
    Schlosser[24]${q_{ {\text{cr,TT} } } } = 0.23{f_{ {\text{TT} } } }\left[ {1 + 0.00216{ {\left( {\dfrac{ { {p } } }{ { {p_{ {\text{cr} } } } } } } \right)}^{1.8} }R{e^{0.5} }Ja} \right]G{h_{ {\text{fg} } } }\\ f = 8{\left( { { { {d } } \mathord{\left/ {\vphantom { { {d_{\text{h} } } } { {d_0} } } } \right. } { {d_0} } } } \right)^{0.32} }R{e^{ - 0.6} } ,Ja = \dfrac{ { {c_p}\Delta {T_{ {\text{sub} } } } } }{ { {h_{ {\text{fg} } } } } }\dfrac{ { {\rho _{\text{l} } } } }{ { {\rho _{\text{g} } } } }\\Re = \dfrac{ { {u_{\text{r} } }{d_{\text{h} } } } }{\mu },{u_{\text{r} } } = u{\left( {1 + \dfrac{ { { {\text{π} }^2} } }{ {4{y^2} } } } \right)^{0.5} } , p_{ {\rm{cr} } }=22.1 \;\mathrm{MPa}, d_0=12.7 \;\mathrm{mm}$d=3~10 mm, p=6.9~13.8 MPa,
    G=700~6000 kg/(m²·s)
    Koski[25]${q_{ {\text{cr,TT} } } } = 0.23{f_{ {\text{TT} } } }\left[ {1 + 0.00216{ {\left( {\dfrac{p}{ { {p_{ {\text{cr} } } } } } } \right)}^{1.8} }R{e^{0.5} }Ja} \right]G{h_{ {\text{fg} } } }\\ f = 8{\left( {\dfrac{ { {d_{\text{h} } } }}{ { {d} } } } \right)^{0.32} }R{e^{ - 0.6} },Ja = \dfrac{ { {c_p}\Delta {T_{ {\text{sub} } } } } }{ { {H_{ {\text{fg} } } } } }\dfrac{ { {\rho _{\text{l} } } }}{ { {\rho _{\text{g} } } }} \\{ { {f_{ {\text{TT} } } }} \mathord{\left/ {\vphantom { { {f_{ {\text{TT} } } }} f} } \right. } f} = 2.2{y^{ - 0.406} },p_{ {\rm{cr} } }=22.1 \;\mathrm{MPa}, d_0=12.7 \;\mathrm{mm}$d=3~10 mm, p=6.9~13.8 MPa,
    G=700~6000 kg/(m²·s)
    Nariai-Inasaka[26]$\begin{gathered} {q_{ {\text{cr, TT} } } } = {q_{ {\text{cr, smooth} } } }{\left[ {1 + 0.01\theta \exp \left( { - {p^2} } \right)} \right]^{1/6} } \\ \theta = \dfrac{ { { {\text{π} }^2}u_{ {\text{ax} } }^2} }{ {2g{d_{\text{i} } }{y^2} } }{\text{; } }{u_{ {\text{ax} } } } = \dfrac{G}{ { {\rho _{\text{m} } } }};{\text{ } }{\rho _{\text{m} } } = {\left( {\dfrac{ {x'} }{ { {\rho _{\text{g} } } }} + \dfrac{ {1 - x'} }{ { {\rho _{\text{l} } } } } } \right)^{ - 1} } \\ \end{gathered}$d=3.45~10.02 mm, p=0.1~3.8 MPa,
    u=4.5~47.5 m/s, y=2.08~∞
    Arment[27]$ \begin{gathered} {q_{{\text{cr, TT}}}} = {q_{{\text{cr, smooth}}}}{\left[ {1 + 0.7\theta \exp \left( { - 0.09{{{\rho _{\text{l}}}} \mathord{\left/ {\vphantom {{{\rho _{\text{l}}}} {{\rho _{\text{g}}}}}} \right. } {{\rho _{\text{g}}}}}} \right)} \right]^{0.14}} \\ {q_{{\text{cr, smooth}}}} = f\left( {p,G,x} \right){k_{\text{d}}}{k_{\text{L}}} \\ {k_{\text{d}}} = {\left( {{d \mathord{\left/ {\vphantom {d {8{\text{ mm}}}}} \right. } {8{\text{ mm}}}}} \right)^{ - 0.5}};{\text{ }}{k_{\text{L}}} = \exp ({d \mathord{\left/ {\vphantom {d L}} \right. } L}){\text{ (if }}{d \mathord{\left/ {\vphantom {d L}} \right. } L} \leqslant 0.2,{\text{ }}x \leqslant 0) \\ \end{gathered} $G=678~7845 kg/(m²·s), d=4.4~11.51 mm,
    p=0.8~14.7 MPa, y=1.93~445
    Yan[11]$ \begin{gathered} {q_{{\text{cr, TT}}}} = {q_{{\text{cr, smooth}}}}{\left[ {1 + 0.7\theta \exp \left( { - 0.09{{{\rho _{\text{l}}}} \mathord{\left/ {\vphantom {{{\rho _{\text{l}}}} {{\rho _{\text{g}}}}}} \right. } {{\rho _{\text{g}}}}}} \right)} \right]^{0.14}} \\ {q_{{\text{cr, smooth}}}} = f\left( {p,G,x} \right){k_{\text{d}}} \\ {k_{\text{d}}} = {\left( {{d \mathord{\left/ {\vphantom {d {8{\text{ mm}}}}} \right. } {8{\text{ mm}}}}} \right)^{ - 0.5}} \\ \end{gathered} $G=678~7845 kg/(m²·s), d=4.4~11.51 mm,
    p=0.8~14.7 MPa, y=1.93~445
      qcr, TT—临界热流密度(内插扭带管);qcr, smooth—临界热流密度(光滑管);Ja—雅各布数;cp—定压比热容;Re—雷诺数;μ—动力粘度;ur—合成速度;pcr—临界压力;ρl—液相密度;ρg—汽相密度;ρm—平均流体密度;f—光滑管摩擦阻力系数;fTT—扭带管摩擦阻力系数;θ—离心力影响因子;uax—修正速度;kd—直径因素校正因子;kL—长度因素校正因子;u—流速;g—重力加速度;x′—真实干度
    下载: 导出CSV

    表  3  经验关联式CHF预测性能

    Table  3.   Prediction Performance of Empirical Correlations for CHF

    关联式MAE/%RMSE/%
    Drizius180.19206.47
    Tong 75-Ⅰ74.013105.02
    Tong 75-Ⅱ125.21163.49
    Nariai-Inasaka226.07303.42
    Arment17.6621.25
    Modified Arment18.2723.24
    下载: 导出CSV

    表  4  机器学习模型的预测性能

    Table  4.   Prediction Performance of Machine Learning Models      

    机器学习模型MAE/%RMSE/%
    BP神经网络6.669.23
    GA-BP神经网络5.898.21
    RBF神经网络2.757.89
    ELM2.794.22
    下载: 导出CSV
  • [1] DOBRAN F. Fusion energy conversion in magnetically confined plasma reactors[J]. Progress in Nuclear Energy, 2012, 60: 89-116. doi: 10.1016/j.pnucene.2012.05.008
    [2] FANG X D, YUAN Y L, XU A Y, et al. Review of correlations for subcooled flow boiling heat transfer and assessment of their applicability to water[J]. Fusion Engineering and Design, 2017, 122: 52-63. doi: 10.1016/j.fusengdes.2017.09.008
    [3] 颜建国,郭鹏程,马嘉琦,等. 高热流条件下过冷沸腾流动阻力特性试验研究[J]. 化工学报,2019, 70(11): 4257-4267.
    [4] HATA K, SHIRAI Y, MASUZAKI S. Heat transfer and critical heat flux of subcooled water flow boiling in a HORIZONTAL circular tube[J]. Experimental Thermal and Fluid Science, 2013, 44: 844-857. doi: 10.1016/j.expthermflusci.2012.10.001
    [5] YAN J G, BI Q C, CAI L Z, et al. Subcooled flow boiling heat transfer of water in circular tubes with twisted-tape inserts under high heat fluxes[J]. Experimental Thermal and Fluid Science, 2015, 68: 11-21. doi: 10.1016/j.expthermflusci.2015.04.003
    [6] BOURNONVILLE Y, GRANDOTTO M, PASCAL-RIBOT S, et al. Numerical simulation of swirl-tube cooling concept, application to the ITER project[J]. Fusion Engineering and Design, 2009, 84(2-6): 501-504. doi: 10.1016/j.fusengdes.2008.11.028
    [7] HATA K, MASUZAKI S. Subcooled boiling heat transfer for turbulent flow of water in a short vertical tube[J]. Journal of Heat Transfer, 2009, 132(1): 011501.
    [8] YAGOV V V. Heat transfer and crisis in swirl flow boiling[J]. Experimental Thermal and Fluid Science, 2005, 29(7): 871-883. doi: 10.1016/j.expthermflusci.2005.03.013
    [9] DEDOV A V, KOMOV A T, VARAVA A N, et al. Hydrodynamics and heat transfer in swirl flow under conditions of one-side heating. Part 1: Pressure drop and single-phase heat transfer[J]. International Journal of Heat and Mass Transfer, 2010, 53(19-20): 4123-4131. doi: 10.1016/j.ijheatmasstransfer.2010.05.034
    [10] DEDOV A V, KOMOV A T, VARAVA A N, et al. Hydrodynamics and heat transfer in swirl flow under conditions of one-side heating. Part 2: Boiling heat transfer. Critical heat fluxes[J]. International Journal of Heat and Mass Transfer, 2010, 53(21-22): 4966-4975. doi: 10.1016/j.ijheatmasstransfer.2010.05.035
    [11] YAN J G, BI Q C, ZHU G, et al. Critical heat flux of highly subcooled water flow boiling in circular tubes with and without internal twisted tapes under high mass fluxes[J]. International Journal of Heat and Mass Transfer, 2016, 95: 606-619. doi: 10.1016/j.ijheatmasstransfer.2015.12.024
    [12] 刘斌,袁博,赵建福,等. 微重力流动沸腾临界热流密度预测经验关联式[J]. 工程热物理学报,2020, 41(10): 2479-2483.
    [13] 钱虹,江诚,潘岳凯,等. 基于时间序列神经网络的蒸汽发生器传热管泄漏程度诊断研究[J]. 核动力工程,2020, 41(2): 160-167. doi: 10.13832/j.jnpe.2020.02.0160
    [14] LIANG X, XIE Y Q, DAY R, et al. A data driven deep neural network model for predicting boiling heat transfer in helical coils under high gravity[J]. International Journal of Heat and Mass Transfer, 2021, 166: 120743. doi: 10.1016/j.ijheatmasstransfer.2020.120743
    [15] PARK H M, LEE J H, KIM K D. Wall temperature prediction at critical heat flux using a machine learning model[J]. Annals of Nuclear Energy, 2020, 141: 107334. doi: 10.1016/j.anucene.2020.107334
    [16] QIU Y, GARG D, KIM S M, et al. Machine learning algorithms to predict flow boiling pressure drop in mini/micro-channels based on universal consolidated data[J]. International Journal of Heat and Mass Transfer, 2021, 178: 121607. doi: 10.1016/j.ijheatmasstransfer.2021.121607
    [17] 马栋梁,周涛,黄彦平. 基于机器学习的超临界水传热恶化判定研究[J]. 核动力工程,2021, 42(4): 91-95. doi: 10.13832/j.jnpe.2021.04.0091
    [18] GAMBILL W R, BUNDY R D, WANSBROUGH R W. Heat transfer, burnout, and pressure drop for water in swirl flow through tubes with internal twisted tapes: ORNL-2911[R]. Oak Ridge, Tenn: Oak Ridge National Laboratory, 1960.
    [19] TONG W, BERGLES A E, JENSEN M K. Critical heat flux and pressure drop of subcooled flow boiling in small-diameter tubes with twisted-tape inserts[J]. Journal of Enhanced Heat Transfer, 1996, 3(2): 95-108. doi: 10.1615/JEnhHeatTransf.v3.i2.30
    [20] HATA K, MASUZAKI S. Heat transfer and critical heat flux of subcooled water flow boiling in a SUS304-tube with twisted-tape insert[J]. Journal of Thermal Science and Engineering Applications, 2011, 3(1): 012001. doi: 10.1115/1.4003609
    [21] ARAKI M, SATO K, SUZUKI S, et al. Critical-heat-flux experiment on the screw tube under one-sided-heating conditions[J]. Fusion Technology, 1996, 29(4): 519-528. doi: 10.13182/FST96-A30695
    [22] BOSCARY J, FABRE J, SCHLOSSER J. Critical heat flux of water subcooled flow in one-side heated swirl tubes[J]. International Journal of Heat and Mass Transfer, 1999, 42(2): 287-301. doi: 10.1016/S0017-9310(98)00108-2
    [23] DRIZIUS M R M, SKEMA R K, SLANCIAUSKAS A A. Boiling crisis in swirled flow of water in pipes[J]. Heat Transfer - Soviet Research, 1978, 10(4): 1-7.
    [24] SCHLOSSER J, CHAPPUIS P, DESCHAMPS P, et al. Thermal-hydraulic tests on net divertor targets using swirl tubes[Z]//Proceedings of the 1991 Winter Meeting of the American Nuclear Society. San Francisco: American Nuclear Society, 1991.
    [25] KOSKI J A. Thermal-hydraulic considerations in the surface contouring of a limited head for Tore Supra[Z]//Proceedings of the 7th Proc Nuclear Thermal Hydraulics, ANS Winter Meeting. 1991.
    [26] NARIAI H, INASAKA F, FUJISAKI W, et al. Critical heat flux of subcooled flow boiling in tubes with internal twisted tape[Z]//Proceedings of the 7th Proc, Nuclear Thermal Hydraulics, ANS Winter Meeting. 1991.
    [27] ARMENT T W, TODREAS N E, BERGLES A E. Critical heat flux and pressure drop for tubes containing multiple short-length twisted-tape swirl promoters[J]. Nuclear Engineering and Design, 2013, 257: 1-11. doi: 10.1016/j.nucengdes.2012.12.008
    [28] 颜建国,郑书闽,郭鹏程,等. 基于GA-BP神经网络的超临界CO2传热特性预测研究[J]. 化工学报,2021, 72(9): 4649-4657.
    [29] 关鹏,焦玉勇,段新胜. 基于RBF神经网络的土体导热系数非线性预测[J]. 太阳能学报,2021, 42(3): 171-178. doi: 10.19912/j.0254-0096.tynxb.2018-1118
    [30] 崔江,唐军祥,张卓然,等. 基于极限学习机的航空发电机旋转整流器快速故障分类方法研究[J]. 中国电机工程学报,2018, 38(8): 2458-2466. doi: 10.13334/J.0258-8013.PCSEE.162334
    [31] TONG L S. A phenomenological study of critical heat flux: ASME Paper 75-1-HT-68[R]. New York, USA: ASME, 1975.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  1569
  • HTML全文浏览量:  65
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-27
  • 修回日期:  2023-02-27
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回