高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非监督机器学习方法的竖直环形流道流动沸腾流型研究

朱隆祥 张卢腾 孙皖 马在勇 潘良明

朱隆祥, 张卢腾, 孙皖, 马在勇, 潘良明. 基于非监督机器学习方法的竖直环形流道流动沸腾流型研究[J]. 核动力工程, 2023, 44(3): 112-120. doi: 10.13832/j.jnpe.2023.03.0112
引用本文: 朱隆祥, 张卢腾, 孙皖, 马在勇, 潘良明. 基于非监督机器学习方法的竖直环形流道流动沸腾流型研究[J]. 核动力工程, 2023, 44(3): 112-120. doi: 10.13832/j.jnpe.2023.03.0112
Zhu Longxiang, Zhang Luteng, Sun Wan, Ma Zaiyong, Pan Liangming. Identification of Flow Regime of Boiling Flow in a Vertical Annulus with Unsupervised Machine Learning[J]. Nuclear Power Engineering, 2023, 44(3): 112-120. doi: 10.13832/j.jnpe.2023.03.0112
Citation: Zhu Longxiang, Zhang Luteng, Sun Wan, Ma Zaiyong, Pan Liangming. Identification of Flow Regime of Boiling Flow in a Vertical Annulus with Unsupervised Machine Learning[J]. Nuclear Power Engineering, 2023, 44(3): 112-120. doi: 10.13832/j.jnpe.2023.03.0112

基于非监督机器学习方法的竖直环形流道流动沸腾流型研究

doi: 10.13832/j.jnpe.2023.03.0112
基金项目: 国家自然科学基金(12205031);中国博士后科学基金(2022M720564)
详细信息
    作者简介:

    朱隆祥(1995—),男,助理研究员,博士,现主要从事反应堆热工水力方面的研究,E-mail:lxzhu@cqu.edu.cn

  • 中图分类号: TL334

Identification of Flow Regime of Boiling Flow in a Vertical Annulus with Unsupervised Machine Learning

  • 摘要: 研究流动沸腾两相流动形态对封闭反应堆安全分析程序关键本构模型具有重要意义。本文基于非监督机器学习流型识别方法,提出将两相流物理知识融入数据驱动的机器学习模型,并构建输入特征的挑选原则:①机器学习在输入特征中捕捉到的应为流型相关信息;②机器学习的聚类准则应包络该流型下输入特征的所有可能性。依据挑选原则分析电导探针信号生成的汽泡分布特征,确定汽泡弦长累积分布函数数据可用于非监督机器学习流型判断。依据流型识别结果,获得了竖直环形流道内流动沸腾的二维局部流型特性,发现高位局部流型出现在流道中心位置并偏向内加热壁面;并判别了流道截面的全局流型,结果表明流动沸腾泡状流至弹状流的流型转变出现在空泡份额约为0.14位置。

     

  • 图  1  流动沸腾典型流型图像示例

    Figure  1.  Illustrations of Typical Flow Regimes

    图  2  基于知识-数据融合型非监督机器学习方法的流型识别流程

    xn—特征数据

    Figure  2.  Workflow of Flow Regime Identification Using the Physics-data-integrated Unsupervised Machine Learning

    图  3  用于流型识别的机器学习方法输入特征

    Figure  3.  Feed-in Features for the Machine Learning to Identify Flow Regimes

    图  4  使用归一化汽泡时延频数数据得出的流型识别结果

    Figure  4.  Flow Regime Identification Results Using the Normalized Bubble Duration Frequency

    图  5  使用汽泡弦长累积分布函数斜率数据得出的流型识别结果示例

    Figure  5.  Flow Regime Identification Results Using the Bubble Chord Length CDFs’ Slope Data

    图  6  使用汽泡弦长CDF得出的局部流型识别结果

    Figure  6.  LFR Identification Results Using the Bubble Chord Length CDF

    图  7  使用汽泡弦长累积分布函数得出的全局流型识别结果及特征

    Figure  7.  GFR Identification Results and Features Using the Bubble Chord Length CDF

    图  8  竖直环形管流动沸腾流型图

    Figure  8.  Global Flow Regime Maps for the Boiling Flow in an Inner-heated Vertical Annulus

  • [1] U. S. NRC. RELAP5/MOD3.3 code manual Vol. 1: Code structure, system models, and solution methods. Nuclear safety analysis division Office of Nuclear Regulatory Research U. S. Nuclear Regulatory Commission: RELAP5/MOD3.3 Code Manual: NUREG/CR-5535[R]. Rockville: Information Systems Laboratories, Inc. , 2001.
    [2] TRACE. TRACE V5.0 Theory Manual[Z]. U. S.: Nuclear Regulatory Commission, 2010.
    [3] SEKOGUCHI K, INOUE K, IMASAKI T. Void signal analysis and gas-liquid two-phase flow regime determination by a statistical pattern recognition method: fluids engineering[J]. JSME International Journal, 1987, 30(266): 1266-1273. doi: 10.1299/jsme1987.30.1266
    [4] MI Y, ISHII M, TSOUKALAS L H. Flow regime identification methodology with neural networks and two-phase flow models[J]. Nuclear Engineering and Design, 2001, 204(1-3): 87-100. doi: 10.1016/S0029-5493(00)00325-3
    [5] 孙斌,周云龙. 基于支持向量机和小波包能量特征的气液两相流流型识别方法[J]. 中国电机工程学报,2005, 25(17): 93-99. doi: 10.3321/j.issn:0258-8013.2005.17.019
    [6] 孙斌,周云龙,赵鹏,等. 基于奇异值分解和最小二乘支持向量机的气-液两相流流型识别方法[J]. 核动力工程,2007, 28(6): 62-66. doi: 10.3969/j.issn.0258-0926.2007.06.015
    [7] 乔守旭,钟文义,谭思超,等. 基于PCA-GA-SVM的竖直下降两相流流型预测[J]. 核动力工程,2022, 43(3): 85-93. doi: 10.13832/j.jnpe.2022.03.0085
    [8] OOI Z J, ZHU L X, BOTTINI J L, et al. Identification of flow regimes in boiling flows in a vertical annulus channel with machine learning techniques[J]. International Journal of Heat and Mass Transfer, 2022, 185: 122439. doi: 10.1016/j.ijheatmasstransfer.2021.122439
    [9] BOTTINI J L, ZHU L X, OOI Z J, et al. Experimental study of boiling flow in a vertical heated annulus with local two-phase measurements and visualization[J]. International Journal of Heat and Mass Transfer, 2020, 155: 119712.
    [10] LEE J Y, ISHII M, KIM N S. Instantaneous and objective flow regime identification method for the vertical upward and downward co-current two-phase flow[J]. International Journal of Heat and Mass Transfer, 2008, 51(13-14): 3442-3459. doi: 10.1016/j.ijheatmasstransfer.2007.10.037
    [11] KOHONEN T. The self-organizing map[J]. Proceedings of the IEEE, 1990, 78(9): 1464-1480. doi: 10.1109/5.58325
    [12] CONG T L, SU G H, QIU S Z, et al. Applications of ANNs in flow and heat transfer problems in nuclear engineering: A review work[J]. Progress in Nuclear Energy, 2013, 62: 54-71. doi: 10.1016/j.pnucene.2012.09.003
    [13] JULIÁ J E, LIU Y, PARANJAPE S, et al. Upward vertical two-phase flow local flow regime identification using neural network techniques[J]. Nuclear Engineering and Design, 2008, 238(1): 156-169. doi: 10.1016/j.nucengdes.2007.05.005
    [14] HERNÁNDEZ L, JULIÁ J E, CHIVA S, et al. Fast classification of two-phase flow regimes based on conductivity signals and artificial neural networks[J]. Measurement Science and Technology, 2006, 17(6): 1511-1521. doi: 10.1088/0957-0233/17/6/032
    [15] MISHIMA K, ISHII M. Flow regime transition criteria for upward two-phase flow in vertical tubes[J]. International Journal of Heat and Mass Transfer, 1984, 27(5): 723-737. doi: 10.1016/0017-9310(84)90142-X
    [16] KELESSIDIS V C, DUKLER A E. Modeling flow pattern transitions for upward gas-liquid flow in vertical concentric and eccentric annuli[J]. International Journal of Multiphase Flow, 1989, 15(2): 173-191. doi: 10.1016/0301-9322(89)90069-4
    [17] DAS G, DAS P K, PUROHIT N K, et al. Flow pattern transition during gas liquid upflow through vertical concentric annuli—Part I: experimental investigations[J]. Journal of Fluids Engineering, 1999, 121(4): 895-901. doi: 10.1115/1.2823552
    [18] WU B, FIROUZI M, MITCHELL T, et al. A critical review of flow maps for gas-liquid flows in vertical pipes and annuli[J]. Chemical Engineering Journal, 2017, 326: 350-377. doi: 10.1016/j.cej.2017.05.135
    [19] OZAR B, JEONG J J, DIXIT A, et al. Flow structure of gas–liquid two-phase flow in an annulus[J]. Chemical Engineering Science, 2008, 63(15): 3998-4011. doi: 10.1016/j.ces.2008.04.042
  • 加载中
图(8)
计量
  • 文章访问数:  1782
  • HTML全文浏览量:  43
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-06
  • 修回日期:  2022-09-15
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回