Development of Dimensionless Rod-bundle CHF Correlation Based on Stepwise Regression and Determination of DNBR Limit
-
摘要: 针对目前国内外先进压水堆棒束临界热流密度(CHF)经验关系式普遍存在数学形式复杂、自变量系数众多且缺乏物理意义的共性问题,以美国电力研究院(EPRI)棒束CHF数据库中遴选的485个5×5压水堆棒束CHF数据点为基础,基于逐步回归分析开发了一套新型无量纲棒束CHF关系式。考虑了导向管冷壁效应与轴向非均匀加热效应后,实测CHF与预测CHF之比M/P的平均值为0.998,均方根偏差为0.0546,标准差为0.0546,基于分组法确定了关系式的95/95 偏离泡核沸腾比(DNBR)限值为1.16。
-
关键词:
- 逐步回归分析 /
- 棒束临界热流密度(CHF) /
- 无量纲关系式 /
- 偏离泡核沸腾比(DNBR)
Abstract: At present, the empirical correlations of critical heat flux (CHF) of advanced PWR rod-bundles at home and abroad generally have the common problems of complex mathematical form, numerous independent variable coefficients and lack of physical significance. In this study, based on 485 rod-bundle CHF data points of 5×5 PWR rod-bundles selected from the rod bundle CHF database of American Electric Power Research Institute (EPRI), a new dimensionless CHF correlation is developed with stepwise regression analysis. Considering the cold wall effect and axial non-uniform heating effect of the guide tube, the average value of the ratio M/P between the measured CHF and the predicted CHF is 0.998, the root mean square error is 0.0546, and the standard deviation is 0.0546. Based on the grouping method, the limit of the 95/95 departure from nucleate boiling ratio (DNBR) of the correlation is determined to be 1.16.-
Key words:
- Stepwise regression /
- Rod-bundle CHF /
- Dimensionless correlation /
- DNBR
-
表 1 5×5棒束试验序列信息
Table 1. Specification of 5×5 Test Bundles
试验序列 Lh/mm Dg/mm dg/mm gsp/mm N HTRF-156 4267.20 317.5 330.2 102 HTRF-157 2438.40 317.5 330.2 77 HTRF-160 2438.40 241.6 279.4 67 HTRF-161 4267.20 241.3 279.4 59 HTRF-163 2438.40 241.3 558.8 41 HTRF-158 2438.40 12.24 317.5 330.2 65 HTRF-164 4267.20 254.0 279.4 75 N—每个试验序列测试点数量 表 2 5×5棒束试验序列局部数据参数范围
Table 2. Local Data Range of 5×5 Test Bundles
试验序列 压力/
MPa质量流速/
(kg·m−2·s−1)平衡含气率 轴向均匀加热典型栅元 10.3~16.7 710~5000 −0.06~0.30 轴向均匀加热导向管栅元 10.4~16.8 1300~4600 −0.05~0.29 轴向非均匀加热典型栅元 10.4~16.8 1300~4800 0.08~0.29 表 3 COBRA-IV-I子通道分析闭合条件
Table 3. Closure Models of Subchannel Analysis with COBRA-IV-I
表 4 无量纲关系式M/P数据误差参数
Table 4. Error Statistics of the Proposed Dimensionless Rod-Bundle CHF Correlation
试验序列 $ N $ $\bar \mu $ RMSE s HTRF-156 102 0.986 0.0526 0.0524 HTRF-157 77 1.006 0.0508 0.0504 HTRF-160 67 1.008 0.0639 0.0634 HTRF-161 59 0.978 0.0586 0.0581 HTRF-163 41 1.009 0.0437 0.0432 HTRF-158 65 1.005 0.0523 0.0519 HTRF-164 75 1.002 0.0507 0.0504 所有数据 485 0.998 0.0546 0.0546 表 5 M/P数据分组及关系式DNBR限值的确定
Table 5. Grouping of the M/P Data and Determination of the DNBR Limit
分组 试验序列 N $\bar \mu $ s 正态分布 95/95 DNBR 1 HTRF-156、161 161 0.983 0.0549 否 1.156 2 HFRT-164 75 1.002 0.0504 是 1.110 3 HTRF-157、158、160、163 249 1.007 0.0537 否 1.119 -
[1] CHENG X, MÜLLER U. Review on critical heat flux in water cooled reactors: FZKA-6825[R]. Karlsruhe: Forschungszentrum Karlsruhe, 2003. [2] 张玉相,席炎炎,庞铮铮,等. CHF关系式开发与DNBR限值确定方法研究[J]. 核动力工程,2016, 37(5): 130-134. [3] TONG L S, WEISMAN J. Thermal analysis of pressurized water reactors[M]. 3rd ed. La Grange Park: American Nuclear Society, 1996: 478-490. [4] REDDY D G, FIGHETTI C F. Parametric study of CHF data Volume 2. A generalized subchannel CHF correlation for PWR and BWR fuel assemblies. Final report: EPRI-NP-2609-Vol. 2[R]. New York: Columbia University, 1983. [5] 刘伟. 压水堆燃料组件临界热流密度关系式的开发、评估及应用[D]. 西安: 西安交通大学, 2013. [6] FIGHETTI C F, REDDY D G. Parametric study of CHF data. Volume 3, Part 1. Critical heat flux data. Final report: EPRI-NP-2609-Vol. 3-Pt. 1[R]. New York: Columbia University, 1982. [7] STEWART C W, WHEELER C L, CENA R J, et al. COBRA-IV: the model and the method: BNWL-2214[R]. Richland: Pacific Northwest Laboratories, 1977. [8] DRAPER N R, SMITH H. Applied regression analysis[M]. New York: John Wiley & Sons Inc, 1981. [9] WEISMAN J, PEI B S. Prediction of critical heat flux in flow boiling at low qualities[J]. International Journal of Heat and Mass Transfer, 1983, 26(10): 1463-1477. doi: 10.1016/S0017-9310(83)80047-7 [10] LEE C H, MUDAWWAR I. A mechanistic critical heat flux model for subcooled flow boiling based on local bulk flow conditions[J]. International Journal of Multiphase Flow, 1988, 14(6): 711-728. doi: 10.1016/0301-9322(88)90070-5 [11] TONG L S, TANG Y S. Boiling heat transfer and two-phase flow[M]. 2nd ed. Washington: Taylor & Francis Ltd. , 1997: 333. [12] GROENEVELD D C, CHENG S C, DOAN T. 1986 AECL-UO critical heat flux lookup table[J]. Heat Transfer Engineering, 1986, 7(1-2): 46-62. doi: 10.1080/01457638608939644 [13] ROSAL E R, CERMAK J O, TONG L S, et al. High pressure rod bundle DNB data with axially non-uniform heat flux[J]. Nuclear Engineering and Design, 1974, 31(1): 1-20. doi: 10.1016/0029-5493(74)90129-0 [14] 刘伟, 杜思佳, 张渝, 等. 一种基于分组法的CHF关系式DNBR限值统计学确定方法: 中国, 201910887222.2[P]. 2020-01-24. [15] 国家质量技术监督局. 数据的统计处理和解释正态性检验: GB/T 4882-2001[S]. 北京: 中国标准出版社, 2004:14-17. [16] OWEN D B. Factors for one-sided tolerance limits and for variables sampling plans: NSA-17-023849[R]. Albuquerque: Sandia Corporation, 1963. [17] NATRELLA M G. Experimental statistics[M]. Washington: NBS Handbook 91 National Bureau Standards, 1963: 31.