高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全堆芯热工子通道模型的JFNK全局求解方法研究

章运山 周夏峰

章运山, 周夏峰. 全堆芯热工子通道模型的JFNK全局求解方法研究[J]. 核动力工程, 2023, 44(5): 39-46. doi: 10.13832/j.jnpe.2023.05.0039
引用本文: 章运山, 周夏峰. 全堆芯热工子通道模型的JFNK全局求解方法研究[J]. 核动力工程, 2023, 44(5): 39-46. doi: 10.13832/j.jnpe.2023.05.0039
Zhang Yunshan, Zhou Xiafeng. Study on JFNK Global Solution Method of of Full-core Thermal Sub-channel Model[J]. Nuclear Power Engineering, 2023, 44(5): 39-46. doi: 10.13832/j.jnpe.2023.05.0039
Citation: Zhang Yunshan, Zhou Xiafeng. Study on JFNK Global Solution Method of of Full-core Thermal Sub-channel Model[J]. Nuclear Power Engineering, 2023, 44(5): 39-46. doi: 10.13832/j.jnpe.2023.05.0039

全堆芯热工子通道模型的JFNK全局求解方法研究

doi: 10.13832/j.jnpe.2023.05.0039
基金项目: 国家自然科学基金(12005073);国防科技工业核动力技术创新中心项目(HDLCXZX-2021-HD-033)
详细信息
    作者简介:

    章运山(1998—),男,硕士研究生,现主要从事核反应堆堆芯子通道模型研究,E-mail: zhangyunshan_dj@foxmail.com

    通讯作者:

    周夏峰,E-mail: zhouxiafeng@hust.edu.cn

  • 中图分类号: TL339

Study on JFNK Global Solution Method of of Full-core Thermal Sub-channel Model

  • 摘要: 反应堆热工子通道模型详细考虑了轴向流动、横向交混,湍流交混等多种耦合因素,是堆芯热工水力分析的关键模型,但是这些因素为子通道数值模拟带来了困难和挑战。为了提高热工子通道模型的计算效率和收敛性,本文基于Jacobian-Free Newton-Krylov(JFNK)全局求解方法(以下简称JFNK方法),开发了全堆芯热工子通道模型的全局求解框架,并基于现有程序的模型和框架建立了基于物理预处理的残差系统,增强JFNK方法的收敛速率。结果表明,JFNK方法的计算效率是固定点迭代方法的5倍,且JFNK方法的效率优势随着收敛精度的提高会更加明显。因此,对于复杂热工子通道模型,JFNK方法有着不错的潜力和效率优势。

     

  • 图  1  子通道流动及交错网格

    P—轴向压降;∆Z—轴向间隔;j—轴向控制体j

    Figure  1.  Subchannel Flow and Staggered Mesh

    图  2  固定点迭代流程图

    Figure  2.  Flow Chart of Fixed-point Iteration

    图  3  JFNK方法流程图

    Figure  3.  Flow Chart of JFNK Method

    图  4  全堆芯组件编号及径向功率分布

    Figure  4.  Assembl Number and Radial Power Distribution of Full Core

    图  5  2×2径向网格

    Figure  5.  2×2 Meshes in Radial Direction

    图  6  堆芯出口混合焓和质量流速

    Figure  6.  Mixing Enthalpy and Mass Flux at Core Outlet

    图  7  组件79和52对应通道轴向质量流速比较

    Figure  7.  Comparison of Axial Mass Fluxes in Assemblies 79 and 52

    图  8  组件79和52对应通道轴向混合焓比较

    Figure  8.  Comparison of Axial Mixing Enthalpies in Assemblies 79 and 52

    图  9  组件79和52对应通道轴向压力比较

    Figure  9.  Comparison of Axial Pressures in Assemblies 79 and 52     

    图  10  2种方法的收敛曲线

    Figure  10.  Convergence Curves of Two Methods

    图  11  不同松弛因子下固定点迭代收敛曲线

    Figure  11.  Convergence Curves of Fixed Point Iteration with Different Relaxation Factors

    表  1  全堆芯计算参数[19-20]

    Table  1.   Calculation Parameters of Full Core

    参数 量值
    燃料组件数目 157
    燃料组件边长/cm 21.504
    燃料棒数目(每个燃料组件) 264
    导向管和控制棒数目(每个燃料组件) 25
    燃料棒外直径/cm 0.95
    导向管外径/cm 1.245
    棒中心间距/cm 1.26
    参考热流密度/(W·cm2) 55.6534
    堆芯入口流量/(m3·h−1) 64066.2
    冷却剂入口温度/℃ 292.4
    堆芯出口压力/105Pa 155
    轴向功率因子峰值 1.55
    轴向加热区起始点高度/cm 15.25
    轴向加热区长度/cm 366.0
    下载: 导出CSV

    表  2  不同收敛精度对应的2种方法的收敛性比较

    Table  2.   Comparison of Convergence of Two Methods with Different Convergence Accuracies

    收敛精度 固定点迭代方法 JFNK全局求解方法 加速比
    时间/s 迭代次数 时间/s Newton迭代次数
    1×10−3 45.0 95 16.97 4 2.65
    1×10−4 89.8 213 24.92 4 3.60
    1×10−5 153.4 336 34.91 5 4.39
    1×10−6 194.5 454 39.10 5 4.97
    下载: 导出CSV

    表  3  不同松弛因子下的2种方法的迭代次数和计算时间

    Table  3.   Iterative Number and Computation Time of Two Methods with Different Relaxation Factors

    φ 固定点迭代方法 JFNK全局求解方法
    固定点迭代步 时间/s Newton迭代步 时间/s
    0.50 无法计算 5 35.9
    0.60 454 194.5 5 39.7
    0.70 994 422.4 5 39.2
    0.80 2376 1172.8 11 54.3
    下载: 导出CSV
  • [1] ROWE D S. COBRA-III: a digital computer program for steady state and transient thermal--hydraulic analysis of rod bundle nuclear fuel elements: BNWL-B-82[R]. Richland: Battelle Pacific Northwest Labs. , 1971.
    [2] ROWE D S. COBRA IIIC: digital computer program for steady state and transient thermal-hydraulic analysis of rod bundle nuclear fuel elements: BNWL-1695[R]. Richland: Battelle Pacific Northwest Labs. , 1973.
    [3] STEWART C W, WHEELER C L, CENA R J, et al. COBRA-IV: the model and the method: BNWL-2214[R]. Richland: Pacific Northwest Laboratories, 1977.
    [4] BASILE D, BEHGI M, CHIERICI R, et al. COBRA-EN: Code System for Thermal-Hydraulic Transient Analysis of Light Water Reactor Fuel Assemblies and Cores: RSICC Code Package PSR-507[R]. U.S.: Oak-Ridge, 2001.
    [5] PLAS R. FLICA III M-reactors or test loops thermohydraulic computer code: CEA-N--2418[R]. Gif-sur-Yvette: CEA Centre d'Etudes Nucleaires de Saclay, 1984.
    [6] DENG J, LU Q, LIU Y, et al. Review of sub-channel code development for pressurized water reactor and introduction of CORTH-V2.0 sub-channel code[J]. Progress in Nuclear Energy, 2020, 125: 103373. doi: 10.1016/j.pnucene.2020.103373
    [7] HU J W, SALKO JR R K, WYSOCKI A J. CTF 4.0 theory manual[R]. Oak Ridge: Oak Ridge National Lab. , 2019.
    [8] TOUMI I, BERGERON A, GALLO D, et al. FLICA-4: a three-dimensional two-phase flow computer code with advanced numerical methods for nuclear applications[J]. Nuclear Engineering and Design, 2000, 200(1-2): 139-155. doi: 10.1016/S0029-5493(99)00332-5
    [9] ESMAILI H, KAZEMINEJAD H, KHALAFI H, et al. Subchannel analysis of annular fuel assembly using the preconditioned Jacobian-free Newton Krylov methods[J]. Annals of Nuclear Energy, 2020, 146: 107616. doi: 10.1016/j.anucene.2020.107616
    [10] PORTER N W. Development of a novel residual formulation of CTF and application of parameter estimation techniques[D]. Raleigh: North Carolina State University, 2018.
    [11] PORTER N W, MOUSSEAU V A, AVRAMOVA M N. CTF-R: a novel residual-based thermal hydraulic solver[J]. Nuclear Engineering and Design, 2019, 348: 37-45. doi: 10.1016/j.nucengdes.2019.04.006
    [12] PLAS R. FLICA III M-reactors or test loops thermohydraulic computer code[R]. Gif-sur-Yvette: CEA Centre d'Etudes Nucleaires de Saclay, 1984.
    [13] MOORTHI A, SHARMA A K, VELUSAMY K. A review of sub-channel thermal hydraulic codes for nuclear reactor core and future directions[J]. Nuclear Engineering and Design, 2018, 332: 329-344. doi: 10.1016/j.nucengdes.2018.03.012
    [14] KNOLL D A, KEYES D E. Jacobian-free Newton–Krylov methods: a survey of approaches and applications[J]. Journal of Computational Physics, 2004, 193(2): 357-397. doi: 10.1016/j.jcp.2003.08.010
    [15] CHAN T F, VAN DER VORST H A. Approximate and incomplete factorizations[M]//KEYES D E, SAMEH A, VENKATAKRISHNAN V. Parallel Numerical Algorithms. Dordrecht: Springer, 1997: 167-202.
    [16] ZHOU X F, ZHONG C M, ZHANG Y Y. Jacobian-free Newton Krylov two-node coarse mesh finite difference based on nodal expansion method for multiphysics coupled models[J]. Annals of Nuclear Energy, 2022, 168: 108915. doi: 10.1016/j.anucene.2021.108915
    [17] EISENSTAT S C, WALKER H F. Choosing the forcing terms in an inexact Newton method[J]. SIAM Journal on Scientific Computing, 1996, 17(1): 16-32. doi: 10.1137/0917003
    [18] PERNICE M, WALKER H F. NITSOL: a Newton iterative solver for nonlinear systems[J]. SIAM Journal on Scientific Computing, 1998, 19(1): 302-318. doi: 10.1137/S1064827596303843
    [19] 广东核电培训中心. 900MW压水堆核电站系统与设备[M]. 北京: 原子能出版社, 2005: 611.
    [20] 梁志滔. 压水堆核电站堆芯子通道分析[D]. 广州: 华南理工大学, 2011.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  1545
  • HTML全文浏览量:  251
  • PDF下载量:  366
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-14
  • 修回日期:  2022-12-23
  • 刊出日期:  2023-10-13

目录

    /

    返回文章
    返回