高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熔融物碎片床冷却特性分析程序开发与应用

方昱 杨生兴 宫厚军 昝元锋 杨祖毛 卓文彬

方昱, 杨生兴, 宫厚军, 昝元锋, 杨祖毛, 卓文彬. 熔融物碎片床冷却特性分析程序开发与应用[J]. 核动力工程, 2023, 44(5): 47-53. doi: 10.13832/j.jnpe.2023.05.0047
引用本文: 方昱, 杨生兴, 宫厚军, 昝元锋, 杨祖毛, 卓文彬. 熔融物碎片床冷却特性分析程序开发与应用[J]. 核动力工程, 2023, 44(5): 47-53. doi: 10.13832/j.jnpe.2023.05.0047
Fang Yu, Yang Shengxing, Gong Houjun, Zan Yuanfeng, Yang Zumao, Zhuo Wenbin. Development and Application of Cooling Characteristic Analysis Code for Molten Debris Bed[J]. Nuclear Power Engineering, 2023, 44(5): 47-53. doi: 10.13832/j.jnpe.2023.05.0047
Citation: Fang Yu, Yang Shengxing, Gong Houjun, Zan Yuanfeng, Yang Zumao, Zhuo Wenbin. Development and Application of Cooling Characteristic Analysis Code for Molten Debris Bed[J]. Nuclear Power Engineering, 2023, 44(5): 47-53. doi: 10.13832/j.jnpe.2023.05.0047

熔融物碎片床冷却特性分析程序开发与应用

doi: 10.13832/j.jnpe.2023.05.0047
基金项目: 国家重点研发计划(2018YFB1900104)
详细信息
    作者简介:

    方 昱(1996—),男,硕士研究生,现主要从事反应堆热工水力与安全分析方面的研究,E-mail: 460126494@qq.com

    通讯作者:

    宫厚军,Email: ghjtsing@126.com

  • 中图分类号: TL334

Development and Application of Cooling Characteristic Analysis Code for Molten Debris Bed

  • 摘要: 为分析压水堆严重事故后期形成碎片床的冷却特性,开发了熔融物碎片床冷却特性分析程序。以一维六方程的两相流模型为基础,应用多孔介质流动沸腾传热模型描述碎片床内两相流动传热物理过程,采用控制容积积分法、半隐式、一阶迎风格式对方程进行离散、求解。应用TUTU、COOLOCE、STYX实验结果,从两相流动及干涸热流密度(DHF)2个方面对模型进行验证,发现Hu&Theofanous模型和Reed模型对于粒径相对较大的碎片床的两相流动预测结果较好,而Lipinski模型对小颗粒碎片床的低压DHF的预测精度较高。利用程序对压水堆严重事故条件下熔融物碎片床的冷却能力进行预测,在1 MW/m3颗粒释热率、顶部水池淹没条件下,碎片床可被冷却高度为0.56 m;采用自然循环驱动底部注水冷却方式,碎片床可被冷却高度升至0.85 m。

     

  • 图  1  传热过程简图[8]

    Figure  1.  Diagram of Heat Transfer Process

    图  2  交错网格示意图

    z—沿碎片床轴向方向

    Figure  2.  Diagram of Staggered Grid

    图  3  程序计算流程

    Figure  3.  Calculation Flow of the Code

    图  4  TUTU实验装置简图

    Figure  4.  Sketch of TUTU Experimental Facility

    图  5  程序计算结果同TUTU实验结果对比情况(ε=0.39,Dp=3.18 mm,H=0.46 m)

    Figure  5.  Comparison between Calculated Results and TUTU Experimental Results (ε=0.39, Dp=3.18 mm, H=0.46 m)

    图  6  程序计算结果同TUTU实验结果对比情况(ε=0.38,Dp=6.35 mm,H=0.46 m)

    Figure  6.  Comparison between Calculated Results and TUTU Experimental Results (ε=0.38, Dp=6.35 mm, H=0.46 m)

    图  7  程序计算结果同COOLOCE实验结果对比情况(ε=0.38,Dp=0.9 mm,H=0.27 m)

    Figure  7.  Comparison between Calculated Results and COOLOCE Experimental Results (ε=0.38, Dp=0.9 mm, H=0.27 m)

    图  8  程序计算结果同STYX实验结果对比情况(ε=0.37,Dp=0.8 mm,H=0.27 m)

    Figure  8.  Comparison between Calculated Results and STYX Experimental Results (ε=0.37, Dp=0.8 mm, H=0.27 m)

    图  9  严重事故条件下碎片床结构简化

    Figure  9.  Simplified Structure of Debris Bed under Severe Accident      

    图  10  顶部水池淹没冷却条件下碎片床高度达到干涸时颗粒温度随时间变化情况

    Figure  10.  Variation of Particle Temperature with Time When the Height of Debris Bed Meets Dry-out under Top-flooding Condition

    图  11  下降管冷却条件下碎片床高度达到干涸时颗粒温度随时间变化情况

    Figure  11.  Variation of Particle Temperature with Time When the Height of Debris Bed Meets Dry-out under Downcomer Cooling Condition

  • [1] ERGUN S. Fluid flow through packed columns[J]. Chemical Engineering Progress, 1952, 48(2): 89-94.
    [2] LIPINSKI R J. A one-dimensional particle bed dryout model[J]. Transactions of the American Nuclear Society, 1981, 38: 386-387.
    [3] REED A W. The effect of channeling on the dryout of heated particulate beds immersed in a liquid pool[D]. Cambridge, USA: Massachusetts Institute of Technology, 1982.
    [4] TUNG V X, DHIR V K. A hydrodynamic model for two-phase flow through porous media[J]. International Journal of Multiphase Flow, 1988, 14(1): 47-65. doi: 10.1016/0301-9322(88)90033-X
    [5] LI L X, ZOU X M, LOU J J, et al. Pressure drops of single/two-phase flows through porous beds with multi-sizes spheres and sands particles[J]. Annals of Nuclear Energy, 2015, 85: 290-295. doi: 10.1016/j.anucene.2015.05.025
    [6] SCHMIDT W. Interfacial drag of two-phase flow in porous media[J]. International Journal of Multiphase Flow, 2007, 33(6): 638-657. doi: 10.1016/j.ijmultiphaseflow.2006.09.006
    [7] LINDHOLM I, HOLMSTRÖM S, MIETTINEN J, et al. Dryout heat flux experiments with deep heterogeneous particle bed[J]. Nuclear Engineering and Design, 2006, 236(19-21): 2060-2074. doi: 10.1016/j.nucengdes.2006.03.036
    [8] RAHMAN S. Coolability of corium debris under severe accident conditions in light water reactors[D]. Stuttgart: Universität Stuttgart, 2013.
    [9] RAVERDY B, MEIGNEN R, PIAR L, et al. Capabilities of MC3D to investigate the coolability of corium debris beds[J]. Nuclear Engineering and Design, 2017, 319: 48-60. doi: 10.1016/j.nucengdes.2017.04.005
    [10] HU K, THEOFANOUS T G. On the measurement and mechanism of dryout in volumetrically heated coarse particle beds[J]. International Journal of Multiphase Flows, 1991, 17(4): 519-532. doi: 10.1016/0301-9322(91)90047-7
    [11] SCHULENBERG T, MULLER U. An improved model for two-phase flow through beds of coarse particles[J]. International Journal of Multiphase Flow, 1987, 13(1): 87-97. doi: 10.1016/0301-9322(87)90009-7
    [12] ROHSENOW W M. A method of correlating heat transfer data for surface boiling of liquids[J]. Heat Transfer, 1952, 74(4): 969-973.
    [13] LIENHARD J H. A heat transfer textbook[M]. Englewood Cliffs: Prentice-Hall, 1987: 457.
    [14] TUTU N K, GINSBERG T, CHEN J C. Interfacial drag for two-phase flow through high permeability porous beds[J]. Journal of Heat Transfer, 1984, 106(4): 865-870. doi: 10.1115/1.3246765
    [15] TAKASUO E, HOLMSTRÖM S, KINNUNEN T, et al. The COOLOCE experiments investigating the dryout power in debris beds of heap-like and cylindrical geometries[J]. Nuclear Engineering and Design, 2012, 250: 687-700. doi: 10.1016/j.nucengdes.2012.06.015
  • 加载中
图(11)
计量
  • 文章访问数:  149
  • HTML全文浏览量:  48
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-14
  • 修回日期:  2023-01-13
  • 刊出日期:  2023-10-13

目录

    /

    返回文章
    返回