Modelling Analysis of Non-uniform Flow and Heat Transfer in Parallel Rectangular Channels under Flow Blockage Condition
-
摘要: 为建立矩形并联通道非均匀流动传热模拟方法,针对板型燃料元件的安全分析提供新的模拟方法和工具,本研究采用一维两流体模型和燃料元件二维导热模型开发热工水力瞬态分析程序,对堵流条件下非均匀流动传热进行模拟。通过数值模拟得到不同堵流工况下流量分配和燃料温度分布,此外对4种不同功率分布下燃料元件二维导热效应进行研究。研究结果表明,堵流后并联通道流量和传热量将重新分配,二维导热模型使燃料元件截面温度场分布更均匀。本文开发的热工水力瞬态分析程序能够用于板型燃料元件非均匀流动传热现象的模拟。Abstract: In order to establish the non-uniform flow and heat transfer modelling method for parallel rectangular channels, and provide a new modelling method and tool for the safety analysis of plate-type fuel, one dimensional two-fluid model coupled with two-dimensional heat conduction of fuel are used to develop a thermal-hydraulic transient analysis code for non-uniform flow and heat transfer simulation under flow blockage condition. The flow distribution and fuel temperature field under different blockage conditions are obtained by numerical simulation, and the two-dimensional heat conduction effect of the fuel under four different power distributions is also studied. The simulation results show that the flow and heat transfer in parallel channels would redistribute after blockage. And the two-dimensional heat conduction model predictes a more uniform temperature profile of fuel plate cross-section. Thus, the thermal-hydraulic transient analysis code developed in this paper can be unsed to simulate the non-uniform flow and heat transfer for the plate-type fuel.
-
Key words:
- Plate type fuel /
- Flow blockage /
- Rectangular channel /
- Parallel channels
-
表 1 程序模型验证实验
Table 1. Experiments for Code Model Validation
作者 流道尺寸长×宽×厚/(mm×mm×mm) 实验工况 验证计算模型 Ma[11] 1143×40×2 Q=4.8 kW; G=875.8 kg/(m2·s)
Tin=29℃; P=0.1 MPa湍流单相流动阻力与传热特性模型 Sudo[12] 750×50×2.25 Q=2.0 kW; W=179 kg/h
Tin=285.55 K; P=0.1 MPa层流单相流动阻力与传热特性模型 Ghione[13] 600×53×2.2 q=2.0 MW/m2; G=2642 kg/(m2·s)
Tin=335.55 K; P=0.5 MPa沸腾起始点及两相沸腾区传热特性模型 Q—加热功率;G—质量流速;W—流量;Tin—入口温度 -
[1] HAMIDOUCHE T, BOUSBIA-SALAH A, ADORNI M, et al. Dynamic calculations of the IAEA safety MTR research reactor Benchmark problem using RELAP5/3.2 code[J]. Annals of Nuclear Energy, 2004, 31(12): 1385-1402. doi: 10.1016/j.anucene.2004.03.008 [2] 李健全,陈晓明,李金才. 板状燃料堆芯流道阻塞事故分析[J]. 原子能科学技术,2002, 36(1): 76-79. [3] AGHAIE M, ZOLFAGHARI A, MINUCHEHR A, et al. Transient analysis of break below the grid in Tehran research reactor using the newly enhanced COBRA-EN code[J]. Annals of Nuclear Energy, 2012, 49: 1-11. doi: 10.1016/j.anucene.2012.06.017 [4] ALMACHI J C, SÁNCHEZ-ESPINOZA V, IMKE U. Extension and validation of the SubChanFlow code for the thermo-hydraulic analysis of MTR cores with plate-type fuel assemblies[J]. Nuclear Engineering and Design, 2021, 379: 111221. doi: 10.1016/j.nucengdes.2021.111221 [5] OBENCHAIN C F. PARET: a program for the analysis of reactor transients: IDO-17282[R]. Idaho Falls: Phillips Petroleum Co. , 1969. [6] HAINOUN A, GHAZI N, ALHABIT F. Simulation of LOFA and RIA for the IEA-R1 research reactor using the Code MERSAT[J]. Annals of Nuclear Energy, 2008, 35(11): 2093-2104. doi: 10.1016/j.anucene.2008.05.013 [7] LU Q, QIU S Z, SU G H. Development of a thermal-hydraulic analysis code for research reactors with plate fuels[J]. Annals of Nuclear Energy, 2009, 36(4): 433-447. doi: 10.1016/j.anucene.2008.11.038 [8] 刘伟,张勇,蒋孝蔚,等. 板型燃料元件反应堆瞬态热工水力分析程序的开发与验证[J]. 核动力工程,2019, 40(5): 18-22. doi: 10.13832/j.jnpe.2019.05.0018 [9] Idaho National Laboratory. RELAP-3D code manual Volume I: Models and Correlations: INEEL-EXT-98-00834, Revision 4.0[R]. USA Idaho: Idaho National Laboratory, 2012. [10] 陈佳跃, 陈焕栋, 张小英, 等. 两流体模型求解算法及其对若干激波问题的模拟[C]//重庆: 国家能源核电软件重点实验室年会, 2018. [11] MA J, LI L J, HUANG Y P, et al. Experimental studies on single-phase flow and heat transfer in a narrow rectangular channel[J]. Nuclear Engineering and Design, 2011, 241(8): 2865-2873. doi: 10.1016/j.nucengdes.2011.04.047 [12] SUDO Y, USUI T, KAMINAGA M. Heat transfer characteristics in narrow vertical rectangular channels heated from both sides[J]. JSME International Journal. Ser. 2, Fluids Engineering, Heat Transfer, Power, Combustion, Thermophysical Properties, 1990, 33(4): 743-748. doi: 10.1299/jsmeb1988.33.4_743 [13] GHIONE A, NOEL B, VINAI P, et al. Assessment of thermal—hydraulic correlations for narrow rectangular channels with high heat flux and coolant velocity[J]. International Journal of Heat and Mass Transfer, 2016, 99: 344-356. doi: 10.1016/j.ijheatmasstransfer.2016.03.099