高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

提高热离子能量转换效率的核心因素初析

倪文涛 罗琦 钟武烨 吕征

倪文涛, 罗琦, 钟武烨, 吕征. 提高热离子能量转换效率的核心因素初析[J]. 核动力工程, 2024, 45(4): 134-141. doi: 10.13832/j.jnpe.2024.04.0134
引用本文: 倪文涛, 罗琦, 钟武烨, 吕征. 提高热离子能量转换效率的核心因素初析[J]. 核动力工程, 2024, 45(4): 134-141. doi: 10.13832/j.jnpe.2024.04.0134
Ni Wentao, Luo Qi, Zhong Wuye, Lyu Zheng. Preliminary Analysis of the Core Factors for Improving Efficiency of Thermionic Energy Conversion[J]. Nuclear Power Engineering, 2024, 45(4): 134-141. doi: 10.13832/j.jnpe.2024.04.0134
Citation: Ni Wentao, Luo Qi, Zhong Wuye, Lyu Zheng. Preliminary Analysis of the Core Factors for Improving Efficiency of Thermionic Energy Conversion[J]. Nuclear Power Engineering, 2024, 45(4): 134-141. doi: 10.13832/j.jnpe.2024.04.0134

提高热离子能量转换效率的核心因素初析

doi: 10.13832/j.jnpe.2024.04.0134
基金项目: 中核集团青年英才科研项目(219602)
详细信息
    作者简介:

    倪文涛(1997—),男,硕士研究生,现主要从事特种动力方面的研究,E-mail: 3286812532@qq.com

    通讯作者:

    钟武烨,E-mail: zhongwuye23@163.com

  • 中图分类号: TL31

Preliminary Analysis of the Core Factors for Improving Efficiency of Thermionic Energy Conversion

  • 摘要: 高效热离子能量转换技术是提升热离子燃料元件热电转换效率、推动空间热离子反应堆电源向更大功率和更长寿命迈进的核心关键技术。为探究提高热离子能量转换效率的核心因素,本文从热离子能量转换的基本原理出发,从发射极的改进、接收极的改进和电弧压降的降低三个方面综述了提升热离子燃料元件热电转换效率的方法。分析表明,大幅提升热电转换效率的明确方向是接收极的改进,关键是新一代低吸铯功函数接收极材料的研发。

     

  • 图  1  TFE的工作原理

    Figure  1.  Working Principle of Thermionic Fuel Element (TFE)

    图  2  TEC电弧工况下的伏安特性曲线

    Figure  2.  Volt Ampere Characteristic Curve of TEC under Arc Operating Conditions

    图  3  纳米材料表面电子发射势垒示意图

    Figure  3.  Schematic Diagram of Electron Emission Potential Barriers on the Surface of Nanomaterials

    图  4  发射器表面开发的类型

    Figure  4.  Types of Emitter Surface Development

    图  5  3种组态的转换器在不同铯压下的发电性能

    TE—发射极温度;TC—接收极温度

    Figure  5.  Effect of Cesium Pressure on the Power Generation Performance of the Three Converters Tested

    图  6  VKh2U接收极功函数

    Figure  6.  The VKh2U Collector Work Function

    图  7  不同铯蒸气温度下的伏安特性

    Figure  7.  Volt-ampere Characteristics at Different Cesium Vapor Temperatures

    图  8  不同电极对TEC的性能对比

    Figure  8.  Performance Comparison of TEC with Different Electrodes

    图  9  单个六边形刚性波纹垫片示意图

    Figure  9.  Schematic Diagram of Single Hexagonal Rigid Corrugated Gasket

  • [1] 苏著亭,杨继材,柯国土. 空间核动力[M]. 上海: 上海交通大学出版社,2016: 26-27.
    [2] STAUB D W. SNAP Programs: summary report: AI-AEC-13067[R]. Canoga Park: North American Aviation, Inc., 1973: 701.
    [3] H. E. 古哈尔金,H. H. 波诺马廖夫-斯捷普诺伊,B. A. 乌索夫. 热电转换和热离子转换式空间核反应堆电源“罗马什卡”和“叶尼塞”[M]. 刘舒,张玲,宋琛玮,译. 北京: 中国原子能出版社,2016: 5-7.
    [4] STANCULESCU A. The role of nuclear power and nuclear propulsion in the peaceful exploration of space[M]. Vienna: International Atomic Energy Agency, 2005: 31.
    [5] HATSOPOULOS G N, GYFTOPOULOS E P. Thermionic energy conversion, volume Ⅰ: processes and devices[M]. Cambridge: The MIT Press, 1973: 5-12.
    [6] STANCULESCU A. The role of nuclear power and nuclear propulsion in the peaceful exploration of space[M]. Vienna: International Atomic Energy Agency, 2005: 29-30.
    [7] VOSS S S. TOPAZ II system description: No. LA-UR-94-4[R]. Los Alamos: Los Alamos National Lab. , 1994.
    [8] 钟武烨,赵守智,郑剑平,等. 空间热离子能量转换技术发展综述[J]. 深空探测学报,2020, 7(1): 47-60.
    [9] HUFFMAN F. Thermionic energy conversion[M]//MEYERS R A. Encyclopedia of Physical Science and Technology. 3rd ed. San Diego: Academic Press, 2003: 627-638.
    [10] RASOR N S. Thermionic energy conversion plasmas[J]. IEEE Transactions on Plasma Science, 1991, 19(6): 1191-1208. doi: 10.1109/27.125041
    [11] 杨继材,柯国土,郑剑平,等. 空间核电源中的热电转换[M]. 哈尔滨: 哈尔滨工程大学出版社,2017: 147-149.
    [12] RASOR N S. Methods for improving thermionic converter performance[C]//Proceedings of the 3rd international Conference on Thermionic Electrical Power Generation. Juelich: International Atomic Energy Agency, 1972.
    [13] 王秀锋. 几种典型金属材料的弹性性能与电子功函数的关联[D]. 湘潭: 湘潭大学,2011: 29.
    [14] SAMSTAD G I, DANKO J C, LEVIN H A. Performance of cylindrical converter with deep etched tungsten emitter[C]//Proceedings of the IEEE Conference Record of 1970 Thermionic Conversion Specialist Conference. New York: IEEE, 1970.
    [15] Б. А. 乌沙考夫. 热离子能量转换器的理论基础[Z]. 李耀鑫,译. 北京: 中国原子能科学研究院,1999: 34-37.
    [16] PARAMONOV D V, EL-GENK M S. Effect of oxygen on performance and mass transport in a single-cell thermionic fuel element[C]//Proceedings of the 31st Intersociety Energy Conversion Engineering Conference. Washington: IEEE, 1996.
    [17] DAVIS P R, SCHWIND G A. Low work function emitter electrodes for advanced thermionic converters[J]. Applied Surface Science, 1986, 25(4): 355-363. doi: 10.1016/0169-4332(86)90080-2
    [18] GUBBELS G H M, WOLFF L R, METSELAAR R. Electron emission microscope measurements on cermet electrodes for thermionic converters[J]. Solid State Ionics, 1985, 16: 47-54. doi: 10.1016/0167-2738(85)90023-2
    [19] CHOU S H, VOSS J, BARGATIN I, et al. An orbital-overlap model for minimal work functions of cesiated metal surfaces[J]. Journal of Physics:Condensed Matter, 2012, 24(44): 445007. doi: 10.1088/0953-8984/24/44/445007
    [20] KRONIK L, SHAPIRA Y. Surface photovoltage phenomena: theory, experiment, and applications[J]. Surface Science Reports, 1999, 37(1-5): 1-206. doi: 10.1016/S0167-5729(99)00002-3
    [21] SCHINDLER P, RILEY D C, BARGATIN I, et al. Surface photovoltage-induced ultralow work function material for thermionic energy converters[J]. ACS Energy Letters, 2019, 4(10): 2436-2443. doi: 10.1021/acsenergylett.9b01214
    [22] KOECK F A M, WANG Y Y, NEMANICH R J. Thermionic converters based on nanostructured carbon materials[J]. AIP Conference Proceedings, 2006, 813(1): 607-613.
    [23] WANG Y Y, TANG G Y, KOECK F A M, et al. Experimental studies of the formation process and morphologies of carbon nanotubes with bamboo mode structures[J]. Diamond and Related Materials, 2004, 13(4-8): 1287-1291. doi: 10.1016/j.diamond.2004.01.009
    [24] WESTOVER T L, FRANKLIN A D, COLA B A, et al. Photo-and thermionic emission from potassium-intercalated carbon nanotube arrays[J]. Journal of Vacuum Science & Technology B, 2010, 28(2): 423-434.
    [25] MICHEL J A, ROBINSON V S, YANG L, et al. Synthesis and characterization of potassium metal/graphitic carbon nanofiber intercalates[J]. Journal of Nanoscience and Nanotechnology, 2008, 8(4): 1942-1950. doi: 10.1166/jnn.2008.18260
    [26] LIANG S J, ANG L K. Electron thermionic emission from graphene and a thermionic energy converter[J]. Physical Review Applied, 2015, 3(1): 014002. doi: 10.1103/PhysRevApplied.3.014002
    [27] ZHU F, LIN X Y, LIU P, et al. Heating graphene to incandescence and the measurement of its work function by the thermionic emission method[J]. Nano Research, 2014, 7(4): 553-560. doi: 10.1007/s12274-014-0423-1
    [28] GIOVANNETTI G, KHOMYAKOV P A, BROCKS G, et al. Doping graphene with metal contacts[J]. Physical Review Letters, 2008, 101(2): 026803. doi: 10.1103/PhysRevLett.101.026803
    [29] KHOSHAMAN A H, FAN H D E, KOCH A T, et al. Thermionics, thermoelectrics, and nanotechnology: new possibilities for old ideas[J]. IEEE Nanotechnology Magazine, 2014, 8(2): 4-15. doi: 10.1109/MNANO.2014.2313172
    [30] KÖCK F A M, GARGUILO J M, NEMANICH R J. Field enhanced thermionic electron emission from sulfur doped nanocrystalline diamond films[J]. Diamond and Related Materials, 2005, 14(3-7): 704-708. doi: 10.1016/j.diamond.2004.12.056
    [31] SMITH J R, NEMANICH R J, BILBRO G L. The effect of Schottky barrier lowering and nonplanar emitter geometry on the performance of a thermionic energy converter[J]. Diamond and Related Materials, 2006, 15(4-8): 870-874. doi: 10.1016/j.diamond.2005.12.057
    [32] KOECK F A M, NEMANICH R J, BALASUBRAMANIAM Y, et al. Enhanced thermionic energy conversion and thermionic emission from doped diamond films through methane exposure[J]. Diamond and Related Materials, 2011, 20(8): 1229-1233. doi: 10.1016/j.diamond.2011.06.032
    [33] NEMANIČ V, ŽUMER M, KOVAČ J, et al. In situ reactivation of low-temperature thermionic electron emission from nitrogen doped diamond films by hydrogen exposure[J]. Diamond and Related Materials, 2014, 50: 151-156. doi: 10.1016/j.diamond.2014.10.003
    [34] PARAMONOV D V, EL-GENK M S. A review of cesium thermionic converters with developed emitter surfaces[J]. Energy Conversion and Management, 1997, 38(6): 533-549. doi: 10.1016/S0196-8904(96)00067-2
    [35] 赵广播,侴爱辉. 热离子能量转换器发射极与接收极的材料与结构[J]. 中国科技论文在线,2006.
    [36] LEE C, LEIB D, MISKOLCZY G. Performance of thermionic converters with structured emitters and collectors[C]//Proceedings of the 25th Intersociety Energy Conversion Engineering Conference. Reno: IEEE, 1990.
    [37] EL-GENK M S, LUKE J R. Performance comparison of thermionic converters with smooth and macro-grooved electrodes[J]. Energy Conversion and Management, 1999, 40(3): 319-334. doi: 10.1016/S0196-8904(98)00049-1
    [38] SIDELNIKOV V N. On the Electron-from-Metals work function[J]. Surface Roentgen and Neutron Research, 2000(8): 42-44.
    [39] SIDEL’NIKOV V N. Nonmonotonic potential barrier for electrons inside an adsorbed layer on the collector of a thermionic converter[J]. Atomic Energy, 2000, 89(1): 574-577. doi: 10.1007/BF02673517
    [40] GERASHCHENKO S S, GUSEVA M I, KORYUKIN V A, et al. Investigation of the characteristics of thermionic converters with a Mo (110) single-crystal collector with Ion-implanted oxygen[J]. Atomic Energy, 1994, 76(2): 147-149. doi: 10.1007/BF02414361
    [41] YARYGIN V, SIDELNIKOV V, MIRONOV V. Energy conversion options for NASA's space nuclear power systems initiative-underestimated capability of thermionics[C]//Proceedings of the 2nd International Energy Conversion Engineering Conference. Providence: AIAA, 2004.
    [42] YARYGIN D V, MIRONOV V S, SOLOV’EV N P, et al. High-output thermionic converter based on a metal-oxygen system on the collector[J]. Atomic Energy, 2000, 89(1): 546-554. doi: 10.1007/BF02673514
    [43] HOLMLID L, SVENSSON R. Collector for thermionic energy converter covered with carbon like material and having a low electronic work function: US, 5578886[P]. 1996-11-26.
    [44] YARYGIN V I. Experimental studies of properties of excited states of cesium (Rydberg Matter) in the interelectrode plasma of a low-temperature thermal to electric energy thermionic converter[J]. Journal of Cluster Science, 2012, 23(1): 77-93. doi: 10.1007/s10876-012-0443-5
    [45] KHALID K A A, LEONG T J, MOHAMED K. Review on thermionic energy converters[J]. IEEE Transactions on Electron Devices, 2016, 63(6): 2231-2241. doi: 10.1109/TED.2016.2556751
    [46] CAMPBELL M F, AZADI M, LU Z P, et al. Nanostructured spacers for thermionic and thermophotovoltaic energy converters[J]. Journal of Microelectromechanical Systems, 2020, 29(5): 637-644. doi: 10.1109/JMEMS.2020.3000422
    [47] NICAISE S M, LIN C, AZADI M, et al. Micron-gap spacers with ultrahigh thermal resistance and mechanical robustness for direct energy conversion[J]. Microsystems & Nanoengineering, 2019, 5(1): 31.
  • 加载中
图(9)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  20
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-28
  • 修回日期:  2023-10-13
  • 刊出日期:  2024-08-12

目录

    /

    返回文章
    返回