Physical Analysis of the Heat Pipe Cooled Micro Nuclear Reactor Based on Thorium-Plutonium Mixed Fuel
-
摘要: 为提高热管冷却微型核反应堆的防扩散性能,实现核能的可持续发展,本研究基于储量丰富的钍基燃料并借鉴美国爱达荷州国家实验室(INL)Design A设计,采用基于蒙特卡罗方法的OpenMC程序开展堆芯中子能谱、反应性系数、功率分布和燃耗等堆芯物理特性的研究。结果表明,相比UO2燃料,钍钚燃料热管冷却核反应堆减少了燃料装载量,具有较长的运行时间和较高的燃料转换比;堆芯整体功率分布不均匀,但轴向功率偏差较小;反应性反馈系数为负,确保了堆芯固有安全性;有效缓发中子份额较小。该研究将为钍钚燃料在热管冷却微型核反应堆堆芯的应用提供参考。Abstract: In order to improve the non-proliferation performance of heat pipe cooled micro nuclear reactors and realize the sustainable development of nuclear energy, abundant thorium-based fuel was adopted in this study with the Design A of Idaho National Laboratory (INL) as a reference, and the physical properties of the reactor core in terms of neutron energy spectrum, reactivity coefficients, power distribution and burnup were investigated by using the OpenMC code based on the Monte Carlo method. The results show that compared with UO2 fuel, thorium-plutonium fuel heat pipe cooled nuclear reactor reduces the fuel loading, extends the operation time, and improves fuel conversion ratio. The overall power distribution of the core is non-uniform, but the axial power deviation is small. Moreover, the reactivity feedback coefficient is negative, ensuring inherent safety of the reactor core. The effective delayed neutron fraction is small. This study will provide reference for the application of thorium-plutonium fuel in heat pipe cooled micro nuclear reactors.
-
Key words:
- Micro nuclear reactor /
- Th-Pu fuel /
- Heat pipe cooling /
- OpenMC /
- Core physics
-
物性参数 UO2 (Th, RGPu)O2 (Th, RGPu)N 密度/(g·cm−3) 10.96 10.28 12.92 有效密度/% 95 90 85 熔点/K 3138 3000 3035 热导率/(W·m−1·K−1) 3.47 2.3 26 比热容/(J·kg−1·K−1) 312 340 260 热膨胀系数/K−1 1.0×10−5 1.2×10−5 1.0×10−5 表 2 不同燃料堆芯功率分布
Table 2. Power Distribution of the Core with Different Fuels
燃料种类 Fxy Fz ζ AO/% UO2 1.238 1.366 1.691 −6.18 (Th, RGPu)O2 1.236 1.553 1.920 −5.55 (Th, RGPu)N 1.215 1.547 1.880 −5.38 表 3 不同燃料反应性系数及有效缓发中子份额βeff
Table 3. Reactivity Coefficients and Effective Delayed Neutron Fractions of Different Fuels
燃料种类 多普勒系数/
(pcm·K−1)热膨胀反应性系数/
(pcm·K−1)βeff UO2 −0.435 −0.317 0.00707 (Th, RGPu)O2 −0.584 −0.365 0.00321 (Th, RGPu)N −0.569 −0.288 0.00315 1pcm=10−5 -
[1] 余红星,马誉高,张卓华,等. 热管冷却反应堆的兴起和发展[J]. 核动力工程,2019, 40(4): 1-8. [2] POSTON D I, MCCLURE P R. White paper – use of LEU for a space reactor: LA-UR-17-27226[R]. Los Alamos: Los Alamos National Laboratory (LANL), 2017. [3] FENG K Y, WU Y W, HU J P, et al. Preliminary analysis of a zirconium hydride moderated megawatt heat pipe reactor[J]. Nuclear Engineering and Design, 2022, 388: 111622. doi: 10.1016/j.nucengdes.2021.111622 [4] TUCKER L P, ALAJO A, USMAN S. Thorium-based mixed oxide fuel in a pressurized water reactor: a beginning of life feasibility analysis with MCNP[J]. Annals of Nuclear Energy, 2015, 76: 323-334. doi: 10.1016/j.anucene.2014.09.058 [5] MOHAMED N M A, BADAWI A. Use of thorium-plutonium MOX in the inner pins of CANDU fuel bundles[J]. Progress in Nuclear Energy, 2016, 91: 49-55. doi: 10.1016/j.pnucene.2016.04.008 [6] BJÖRK K I, FHAGER V, DEMAZIÈRE C. Comparison of thorium-based fuels with different fissile components in existing boiling water reactors[J]. Progress in Nuclear Energy, 2011, 53(6): 618-625. doi: 10.1016/j.pnucene.2010.03.004 [7] IBRAHIM A, AZIZ M, EL-KAMEESY S U, et al. Analysis of thorium fuel feasibility in large scale gas cooled fast reactor using MCNPX code[J]. Annals of Nuclear Energy, 2018, 111: 460-467. doi: 10.1016/j.anucene.2017.07.029 [8] 刘紫静,赵鹏程,张斌,等. 超长寿命小型自然循环铅铋快堆堆芯概念设计研究[J]. 原子能科学技术,2020, 54(7): 1254-1265. doi: 10.7538/yzk.2019.youxian.0720 [9] ROMANO P K, HORELIK N E, HERMAN B R, et al. OpenMC: A state-of-the-art Monte Carlo code for research and development[J]. Annals of Nuclear Energy, 2015, 82: 90-97. doi: 10.1016/j.anucene.2014.07.048 [10] WALKER E, SKUTNIK S, WIESELQUIST W, et al. SCALE modeling of the fast-spectrum heat pipe reactor: ORNL/TM-2021/2021[R]. Oak Ridge: Oak Ridge National Laboratory, 2022. [11] 秦凯文,杨波,王子鸣,等. 不同类型核燃料对热管冷却反应堆燃耗性能的影响[J]. 强激光与粒子束,2022, 34(12): 126001. doi: 10.11884/HPLPB202234.220156 [12] 刘豪杰,秦凯文,魏强林,等. 不同热管工质对热管冷却反应堆堆芯物理参数的影响与分析[J]. 科学技术与工程,2023, 23(8): 3289-3294. doi: 10.12404/j.issn.1671-1815.2023.23.08.03289 [13] 刘晓波,胡泽华. 蒙卡程序计算临界基准题测试检验ENDF/B-Ⅷ. 0核数据库[J]. 强激光与粒子束,2022, 34(2): 026003. [14] 秦凯文. 基于核数据对热管冷却反应堆keff的不确定性分析及目标精度评估[D]. 南昌: 东华理工大学,2023. [15] 刘紫静,赵鹏程,任广益,等. 长寿命小型自然循环铅基快堆燃料选型[J]. 原子能科学技术,2020, 54(5): 944-953. doi: 10.7538/yzk.2019.youxian.0402 [16] International Atomic Energy Agency. Potential of thorium based fuel cycles to constrain plutonium and reduce long lived waste toxicity: IAEA-TECDOC-1349[R]. Vienna: International Atomic Energy Agency, 2003: 1-144. [17] CAI B S, CHEN S L, WU T F, et al. Neutronic design for heat pipe reactor with annular and accident tolerant fuels[J]. Frontiers in Energy Research, 2021, 9: 678262. doi: 10.3389/fenrg.2021.678262 [18] 朱继洲,奚树人,单建强,等. 核反应堆安全分析[M]. 西安: 西安交通大学出版社,2004: 35.