高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

倾斜角度下高温钠热管间歇沸腾试验研究

杨思远 马誉高 文青龙 文爽 丁书华 贺林峰 袁波

杨思远, 马誉高, 文青龙, 文爽, 丁书华, 贺林峰, 袁波. 倾斜角度下高温钠热管间歇沸腾试验研究[J]. 核动力工程. doi: 10.13832/j.jnpe.2024.060020
引用本文: 杨思远, 马誉高, 文青龙, 文爽, 丁书华, 贺林峰, 袁波. 倾斜角度下高温钠热管间歇沸腾试验研究[J]. 核动力工程. doi: 10.13832/j.jnpe.2024.060020
Yang Siyuan, Ma Yugao, Wen Qinglong, Wen Shuang, Ding Shuhua, He Linfeng, Yuan Bo. Experimental Study of Geyser Boiling in High-temperature Sodium Heat Pipe at Inclined Angle Condition[J]. Nuclear Power Engineering. doi: 10.13832/j.jnpe.2024.060020
Citation: Yang Siyuan, Ma Yugao, Wen Qinglong, Wen Shuang, Ding Shuhua, He Linfeng, Yuan Bo. Experimental Study of Geyser Boiling in High-temperature Sodium Heat Pipe at Inclined Angle Condition[J]. Nuclear Power Engineering. doi: 10.13832/j.jnpe.2024.060020

倾斜角度下高温钠热管间歇沸腾试验研究

doi: 10.13832/j.jnpe.2024.060020
基金项目: 核反应堆技术全国重点实验室基金(KFKT-05-FW-HT-20220013)
详细信息
    作者简介:

    杨思远(1998—),男,硕士研究生,现主要从事反应堆热工水力方向研究,E-mail: 1614355207@qq.com

    通讯作者:

    文青龙,E-mail: qlwen@cqu.edu.cn

  • 中图分类号: TL33

Experimental Study of Geyser Boiling in High-temperature Sodium Heat Pipe at Inclined Angle Condition

  • 摘要: 为研究高温碱金属热管启动过程中的间歇沸腾现象,给热管反应堆安全运行提供可参考的操作条件,采用金属钠为热管工质,对热管启动过程的间歇沸腾的影响因素和作用机制开展了试验研究。研究结果表明,热管加热功率和倾角对间歇沸腾有重要影响,在90°倾角情况下,加热功率从600 W升至750 W,间歇沸腾周期变化范围为29~736 s,温度振幅范围为18~35℃;热管倾角为0°时不会发生间歇沸腾;间歇沸腾在中等加热功率条件下容易发生,随倾角的增大,间歇沸腾起始和截止的加热功率减小,倾角为45°、60°、90°工况下间歇沸腾起始和截止的加热功率分别为250、200、150 W和600、450、350 W。同一加热功率、不同倾角工况下间歇沸腾的周期差别较大,而温度振幅变化较小;冷凝段长度减小后间歇沸腾强度降低且发生间歇沸腾的功率区间提前;本研究结果为进一步探究碱金属热管间歇沸腾发生机理奠定了基础,对碱金属热管设计优化和热管反应堆安全运行提供了重要的数据和理论支持。

     

  • 图  1  试验装置示意图

    Figure  1.  Schematic of Experimental Device

    图  2  温度测点

    Figure  2.  Temperature Measuring Point

    图  3  热管启动过程

    Figure  3.  Process of Heat Pipe Start-up

    图  4  热管启动过程示意图

    Figure  4.  Schematic of Heat Pipe Start-up Process

    图  5  热管倾角为90°时加热功率的影响

    Figure  5.  The Influence of Heating Power when the Inclination Angle of Heat Pipe is 90°

    图  6  热管倾角为60°时加热功率的影响

    Figure  6.  The Influence of Heating Power when the Inclination Angle of Heat Pipe is 60°

    图  7  热管倾角为0°时的启动过程

    Figure  7.  The Start-up Process when the Inclination Angle of the Heat Pipe is 0°

    图  8  热管倾角为45°时的启动过程

    Figure  8.  The Start-up Process when the Inclination Angle of the Heat Pipe is 45°

    图  9  热管倾角为60°时的启动过程

    Figure  9.  The Start-up Process when the Inclination Angle of the Heat Pipe is 60°

    图  10  热管倾角为90°时的启动过程

    Figure  10.  The Start-up Process when the Inclination Angle of the Heat Pipe is 90°

    图  11  冷凝段长度为50 cm时热管热阻变化

    Figure  11.  The Thermal Resistance of the Heat Pipe Changes when the Length of the Condensing Section is 50 cm

    图  12  不同冷凝段长度和倾角下热管热阻变化

    Figure  12.  Variation of Thermal Resistance of Heat Pipe under Different Condensation Section Length and Inclination Angle

    图  13  90°倾角下冷凝段长度的影响

    Figure  13.  The Influence of Condensation Length at 90° Inclination Angle

    图  14  间歇沸腾的周期性

    Figure  14.  Periodicity of Geyser Boiling

    图  15  热管垂直布置工况的间歇沸腾流型示意图

    Figure  15.  Schematic of Geyser Boiling Flow Pattern under Vertical Condition

    图  16  热管倾斜时汽液分布示意图

    Figure  16.  Schematic of Vapor-liquid Distribution when the Heat Pipe is Inclined

    图  17  热管两侧壁面气泡的受力分析

    Figure  17.  Force Analysis of Bubbles on Both Sides of the Heat Pipe Wall

    表  1  试验工况表

    Table  1.   Test Condition Table

    序号倾斜角度
    加热功率/W冷凝段长度/cm冷凝段平均温度/℃辐射换热功率/W自然对流换热功率/W总散热功率/W
    1150~60060500550.87215.75766.62
    245°150~90060500550.87116.46667.33
    360°300~65060500550.87115.69666.56
    490°300~75060500550.87115.54666.41
    545°150~90050500459.10101.81560.91
    660°150~70050500459.10101.03560.13
    790°150~60050500459.10100.89559.99
    下载: 导出CSV
  • [1] LIN T F, LIN W T, TSAY Y L, et al. Experimental investigation of geyser boiling in an annular two-phase closed thermosyphon[J]. International Journal of Heat and Mass Transfer, 1995, 38(2): 295-307. doi: 10.1016/0017-9310(95)90019-5
    [2] ALAMMAR A A, AL-DADAH R K, MAHMOUD S M. Effect of inclination angle and fill ratio on geyser boiling phenomena in a two-phase closed thermosiphon – Experimental investigation[J]. Energy Conversion and Management, 2018, 156: 150-166.
    [3] EMAMI M R S, NOIE S H, KHOSHNOODI M, et al. Investigation of geyser boiling phenomenon in a two-phase closed thermosyphon[J]. Heat Transfer Engineering, 2009, 30(5): 408-415.
    [4] KHAZAEE I, HOSSEINI R, NOIE S H. Experimental investigation of effective parameters and correlation of geyser boiling in a two-phase closed thermosyphon[J]. Applied Thermal Engineering, 2010, 30(5): 406-412.
    [5] MANTELLI M B H, UHLMANN T W, CISTERNA L H R. Experimental study of a sodium two phase thermosyphon[Z]//9th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics. Iguazu Falls, 2017.
    [6] MANOJ R, KUMAR M C, RAO R N, et al. Performance evaluation of sodium heat pipe through parameteric studies[J]. Frontiers in Heat Pipes, 2013, 3(4). DOI: 10.5098/fhp.v3.4.3003.
    [7] CISTERNA L H R, CARDOSO M C K, FRONZA E L, et al. Operation regimes and heat transfer coefficients in sodium two-phase thermosyphons[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119555. doi: 10.1016/j.ijheatmasstransfer.2020.119555
    [8] GUO H, GUO Q, YAN X K, et al. Experimental investigation on heat transfer performance of high-temperature thermosyphon charged with sodium-potassium alloy[J]. Applied Thermal Engineering, 2018, 139: 402-408. doi: 10.1016/j.applthermaleng.2018.04.139
    [9] WANG C L, ZHANG L R, LIU X, et al. Experimental study on startup performance of high temperature potassium heat pipe at different inclination angles and input powers for nuclear reactor application[J]. Annals of Nuclear Energy, 2020, 136: 107051.
    [10] MA Y G, YU H X, HUANG S F, et al. Effect of inclination angle on the startup of a frozen sodium heat pipe[J]. Applied Thermal Engineering, 2022, 201: 117625. doi: 10.1016/j.applthermaleng.2021.117625
    [11] VLIET G C. Natural convection local heat transfer on constant-heat-flux inclined surfaces[J]. Journal of Heat Transfer, 1969, 91(4): 511-516.
    [12] HUNNEWELL T S, WALTON K L, SHARMA S, et al. Total hemispherical emissivity of SS 316L with simulated very high temperature reactor surface conditions[J]. Nuclear Technology, 2017, 198(3): 293-305. doi: 10.1080/00295450.2017.1311120
    [13] STANCULESCU A. The role of nuclear power and nuclear propulsion in the peaceful exploration of space[M]. Vienna: International Atomic Energy Agency, 2005: 119.
    [14] 孙浩,王成龙,刘逍,等. 水下航行器微型核电源堆芯设计[J]. 原子能科学技术,2018, 52(4): 646-651. doi: 10.7538/yzk.2017.youxian.0465
    [15] MCCLURE P R, REID R S, DIXON D D. Advantages and applications of megawatt-sized heat-pipe reactors[R]. La Grange Park: American Nuclear Society, 2012.
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-07
  • 修回日期:  2024-08-07
  • 网络出版日期:  2025-04-22

目录

    /

    返回文章
    返回