高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光热反射技术的耐事故核燃料导热性质研究

王宇舟 张强 马显锋 朱斐 廖京京

王宇舟, 张强, 马显锋, 朱斐, 廖京京. 基于光热反射技术的耐事故核燃料导热性质研究[J]. 核动力工程, 2024, 45(S1): 96-102. doi: 10.13832/j.jnpe.2024.S1.0096
引用本文: 王宇舟, 张强, 马显锋, 朱斐, 廖京京. 基于光热反射技术的耐事故核燃料导热性质研究[J]. 核动力工程, 2024, 45(S1): 96-102. doi: 10.13832/j.jnpe.2024.S1.0096
Wang Yuzhou, Zhang Qiang, Ma Xianfeng, Zhu Fei, Liao Jingjing. Study on Thermal Conductivity of Accident Tolerant Fuels using Laser-based Thermoreflectance Technology[J]. Nuclear Power Engineering, 2024, 45(S1): 96-102. doi: 10.13832/j.jnpe.2024.S1.0096
Citation: Wang Yuzhou, Zhang Qiang, Ma Xianfeng, Zhu Fei, Liao Jingjing. Study on Thermal Conductivity of Accident Tolerant Fuels using Laser-based Thermoreflectance Technology[J]. Nuclear Power Engineering, 2024, 45(S1): 96-102. doi: 10.13832/j.jnpe.2024.S1.0096

基于光热反射技术的耐事故核燃料导热性质研究

doi: 10.13832/j.jnpe.2024.S1.0096
基金项目: 国家自然科学基金资助项目(12305326,U2032143,12205392);广东省基础与应用基础重大科技专项(2019B030302011);广东省国际科技合作基地项目(2020A0505020005);珠海市珠港澳科技合作项目(ZH2207-7301-210009-P-WC);中山大学中央高校基本科研业务费专项资助(23qnpy76)
详细信息
    作者简介:

    王宇舟(1992—),男,副教授,现主要从事耐事故燃料性能分析方面的研究,E-mail: wangyzh253@mail.sysu.edu.cn

    通讯作者:

    马显锋,E-mail: maxf6@mail.sysu.edu.cn

  • 中图分类号: TL352

Study on Thermal Conductivity of Accident Tolerant Fuels using Laser-based Thermoreflectance Technology

  • 摘要: 为改善新型耐事故核燃料的导热性能,提高导热性能测试方法的检测效率和测试精度,本文介绍了具有高空间分辨率和高测试频率的光热反射技术,阐述了此类技术的基本原理、实验装置和测试方法,重点介绍了针对核燃料研究所发展的空间域光热反射技术。以离子辐照样品和包覆核燃料涂层为例,介绍了空间域光热反射技术在原位测试领域的应用场景。针对离子辐照样品的不均匀损伤分布,开发了多层传热模型用于更准确地表征材料导热性质,采用该技术获得了UO2燃料热导率随着离子注入剂量的定量衰减规律;准确表征了包覆核燃料微球各涂层在高温下的热输运性质,结合微结构研究揭示了缺陷相对于热解炭涂层热导率的影响。光热反射技术为探究辐照损伤和结构缺陷对于核燃料热量传输的作用机制提供了有力工具,为进一步改进燃料性能、开发高精度的燃料仿真模型提供了参考依据。

     

  • 图  1  SDTR测量系统和2.6 MeV 质子在UO2中的辐照损伤示意图[10,16]

    Figure  1.  Schematic Diagram of SDTR Measurement System and Irradiation Damage of 2.6 MeV Proton in UO2

    图  2  采用SDTR技术测量质子和氦离子辐照后UO2燃料的导热性能[20]

    Figure  2.  Employing SDTR to Obtain Thermal Conductivity of UO2 under Proton and Helium Ion Irradiation

    图  3  TRISO燃料颗粒各涂层热导率和热扩散系数随温度的变化[24]

    Figure  3.  Changes of Thermal Conductivity and Thermal Diffusion Coefficient of Coatings on TRISO Fuel Particles with Temperature

    表  1  铀和氧点缺陷对于晶格和声子散射的影响[21-22]

    Table  1.   Impact of Uranium and Oxygen Frenkel Pair on Lattice and Phonon Scattering

    缺陷对 弛豫体积/Å3 声子散射参数/(104 K−4·s−1)
    铀缺陷对 50 44.9
    氧缺陷对 10 17.8
    下载: 导出CSV
  • [1] MALA M, MIKLOS M. Nondestructive testing of nuclear reactor components integrity[C]//Proceedings of International Conference on WWER Fuel Performance, Modelling and Experimental Support. Bulgaria: Helena Resort, 2011.
    [2] ZINKLE S J, TERRANI K A, GEHIN J C, et al. Accident tolerant fuels for LWRs: a perspective[J]. Journal of Nuclear Materials, 2014, 448(1-3): 374-379. doi: 10.1016/j.jnucmat.2013.12.005
    [3] 焦拥军,于俊崇,周毅,等. 商用压水堆核燃料研发进展与应用展望[J]. 核动力工程,2022, 43(6): 1-7.
    [4] ZHOU W, ZHOU W Z. Enhanced thermal conductivity accident tolerant fuels for improved reactor safety – a comprehensive review[J]. Annals of Nuclear Energy, 2018, 119: 66-86. doi: 10.1016/j.anucene.2018.04.040
    [5] 程亮,张鹏程. 事故容错热导率增强型UO2核燃料的研究进展[J]. 材料导报,2019, 33(11): 1787-1792. doi: 10.11896/cldb.18050107
    [6] WHITE J T, TRAVIS A W, DUNWOODY J T, et al. Fabrication and thermophysical property characterization of UN/U3Si2 composite fuel forms[J]. Journal of Nuclear Materials, 2017, 495: 463-474. doi: 10.1016/j.jnucmat.2017.08.041
    [7] 陆永洪,贾代坤,粟丹科,等. 真空烧结U3Si2燃料芯块的微观组织与导热性能[J]. 粉末冶金材料科学与工程,2022, 27(4): 436-441.
    [8] KREJČÍ J, KABÁTOVÁ J, MANOCH F, et al. Deve lopment and testing of multicomponent fuel cladding with enhanced accidental performance[J]. Nuclear Engineering and Technology, 2020, 52(3): 597-609. doi: 10.1016/j.net.2019.08.015
    [9] MARUYAMA T, HARAYAMA M. Neutron irradiation effect on the thermal conductivity and dimensional change of graphite materials[J]. Journal of Nuclear Materials, 1992, 195(1-2): 44-50. doi: 10.1016/0022-3115(92)90362-O
    [10] KHAFIZOV M, CHAUHAN V, WANG Y, et al. Investigation of thermal transport in composites and ion beam irradiated materials for nuclear energy applications[J]. Journal of Materials Research, 2017, 32(1): 204-216. doi: 10.1557/jmr.2016.421
    [11] PAVLOV T R, MIDDLEMAS S C, MILLER B D, et al. Understanding the local thermal conductivity evolution of neutron irradiated U3Si2 dispersion fuel via state-of-the-art thermo-reflectance measurements[J]. Journal of Nuclear Materials, 2021, 557: 153280. doi: 10.1016/j.jnucmat.2021.153280
    [12] FAVALORO T, BAHK J H, SHAKOURI A. Characterization of the temperature dependence of the thermoreflectance coefficient for conductive thin films[J]. Review of Scientific Instruments, 2015, 86(2): 024903. doi: 10.1063/1.4907354
    [13] HURLEY D H, SCHLEY R S, KHAFIZOV M, et al. Local measurement of thermal conductivity and diffusivity[J]. Review of Scientific Instruments, 2015, 86(12): 123901. doi: 10.1063/1.4936213
    [14] WANG Y Z, CHAUHAN V, HUA Z L, et al. A square pulse thermoreflectance technique for the measurement of thermal properties[J]. International Journal of Thermophysics, 2022, 43(4): 53. doi: 10.1007/s10765-021-02949-z
    [15] ZHAO D L, QIAN X, GU X K, et al. Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials[J]. Journal of Electronic Packaging, 2016, 138(4): 040802. doi: 10.1115/1.4034605
    [16] RIYAD M F, CHAUHAN V, KHAFIZOV M. Implementation of a multilayer model for measurement of thermal conductivity in ion beam irradiated samples using a modulated thermoreflectance approach[J]. Journal of Nuclear Materials, 2018, 509: 134-144. doi: 10.1016/j.jnucmat.2018.06.013
    [17] SCHMIDT A J, CHEAITO R, CHIESA M. A frequency-domain thermoreflectance method for the characterization of thermal properties[J]. Review of Scientific Instruments, 2009, 80(9): 094901. doi: 10.1063/1.3212673
    [18] CAHILL D G. Analysis of heat flow in layered structures for time-domain thermoreflectance[J]. Review of Scientific Instruments, 2004, 75(12): 5119-5122. doi: 10.1063/1.1819431
    [19] RONCHI C, SHEINDLIN M, STAICU D, et al. Effect of burn-up on the thermal conductivity of uranium dioxide up to 100.000 MWdt−1[J]. Journal of Nuclear Materials, 2004, 327(1): 58-76. doi: 10.1016/j.jnucmat.2004.01.018
    [20] KHAFIZOV M, RIYAD M F, WANG Y Z, et al. Combining mesoscale thermal transport and x-ray diffraction measurements to characterize early-stage evolution of irradiation-induced defects in ceramics[J]. Acta Materialia, 2020, 193: 61-70. doi: 10.1016/j.actamat.2020.04.018
    [21] GÜNAY S D. Swelling mechanisms of UO2 lattices with defect ingrowths[J]. PLoS One, 2015, 10(8): e0134500. doi: 10.1371/journal.pone.0134500
    [22] LIU X Y, COOPER M W D, MCCLELLAN K J, et al. Molecular dynamics simulation of thermal transport in UO2 containing uranium, oxygen, and fission-product defects[J]. Physical Review Applied, 2016, 6(4): 044015. doi: 10.1103/PhysRevApplied.6.044015
    [23] POWERS J J, WIRTH B D. A review of TRISO fuel performance models[J]. Journal of Nuclear Materials, 2010, 405(1): 74-82. doi: 10.1016/j.jnucmat.2010.07.030
    [24] WANG Y Z, HUA Z H, SCHLEY R, et al. Thermal properties measurement of TRISO particle coatings from room temperature to 900 ℃ using laser-based thermoreflectance methods[J]. Journal of Nuclear Materials, 2022, 565: 153721. doi: 10.1016/j.jnucmat.2022.153721
    [25] PAVLOV T R, LESTAK M, WENMAN M R, et al. Examining the thermal properties of unirradiated nuclear grade graphite between 750 and 2500 K[J]. Journal of Nuclear Materials, 2020, 538: 152176. doi: 10.1016/j.jnucmat.2020.152176
    [26] LÓPEZ-HONORATO E, CHIRITESCU C, XIAO P, et al. Thermal conductivity mapping of pyrolytic carbon and silicon carbide coatings on simulated fuel particles by time-domain thermoreflectance[J]. Journal of Nuclear Materials, 2008, 378(1): 35-39. doi: 10.1016/j.jnucmat.2008.04.007
    [27] SNEAD L L, NOZAWA T, KATOH Y, et al. Handbook of SiC properties for fuel performance modeling[J]. Journal of Nuclear Materials, 2007, 371(1-3): 329-377. doi: 10.1016/j.jnucmat.2007.05.016
    [28] BALANDIN A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials, 2011, 10(8): 569-581. doi: 10.1038/nmat3064
    [29] LÓPEZ-HONORATO E, MEADOWS P J, XIAO P. Fluidized bed chemical vapor deposition of pyrolytic carbon–I. Effect of deposition conditions on microstructure[J]. Carbon, 2009, 47(2): 396-410. doi: 10.1016/j.carbon.2008.10.023
    [30] 张建辉,夏文莉. 沉积条件对低温各向同性热解炭微观结构的影响[J]. 中国有色金属学报,2015, 25(1): 165-170.
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  24
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-28
  • 修回日期:  2024-03-27
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回