| [1] | 
				
					赵静,余红星,李锋. 1000MW级压水堆安全壳压力温度计算分析[J]. 核动力工程,2003, 24(5): 409-411,425. doi:  10.3969/j.issn.0258-0926.2003.05.003
					 | 
			
		
				| [2] | 
				
					ANDERSON M H, HERRANZ L E, CORRADINI M L. Experimental analysis of heat transfer within the AP600 containment under postulated accident conditions[J]. Nuclear Engineering and Design, 1998, 185(2-3): 153-172. doi:  10.1016/S0029-5493(98)00232-5
					 | 
			
		
				| [3] | 
				
					张龙飞,房保国,李凤宇. 全厂断电引发的严重事故中反应堆压力容器失效机理研究[J]. 原子能科学技术,2012, 46: 305-308. doi:  10.7538/yzk.2012.46.03.0305
					 | 
			
		
				| [4] | 
				
					THEOFANOUS T G, LIU C, ADDITION S, ANGELINI S, et al. In-vessel coolability and retention of a core melt[J]. Nuclear Engineering and Design, 1997, 169(1-3): 1-48. doi:  10.1016/S0029-5493(97)00009-5
					 | 
			
		
				| [5] | 
				
					关仲华,余红星,江光明. 堆芯熔融物在下腔室内冷却模型研究及缓解集热效应的对策[J]. 核动力工程,2008, 29(5): 72-76.
					 | 
			
		
				| [6] | 
				
					傅孝良,杨燕华,周卫华,杨晓. CAR 1000的IVR有效性评价堆芯融化及熔池形成过程分析[J]. 核动力工程,2010, 31(5): 102-107.
					 | 
			
		
				| [7] | 
				
					TSAI F J, LEE M, LIU H C. Simulation of the in-vessel retention device heat-removal capability of AP-1000 during a core meltdown accident[J]. Annals of Nuclear Energy, 2017, 99: 455-463. doi:  10.1016/j.anucene.2016.09.052
					 | 
			
		
				| [8] | 
				
					张小英,姚婷婷,李志威,等. 堆芯熔融物对压力容器壁面烧蚀过程的数值模拟[J]. 核技术,2015, 38: 020606. doi:  10.11889/j.0253-3219.2015.hjs.38.020606
					 | 
			
		
				| [9] | 
				
					ZHAN D K, LIU F Y, ZHANG X Y, et al. Ablation and thermal stress analysis of RPV vessel under heating by core melt[J]. Nuclear Engineering and Design, 2018, 330: 550-558. doi:  10.1016/j.nucengdes.2018.02.008
					 | 
			
		
				| [10] | 
				
					SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175-209. doi:  10.1016/S0022-5096(99)00029-0
					 | 
			
		
				| [11] | 
				
					SILLING S A. Linearized theory of peridynamic states[J]. Journal of Elasticity, 2010, 99(1): 85-111. doi:  10.1007/s10659-009-9234-0
					 | 
			
		
				| [12] | 
				
					HUANG D, LU G D, QIAO P Z. An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis[J]. International Journal of Mechanical Sciences, 2015, 94-95: 111-122. doi:  10.1016/j.ijmecsci.2015.02.018
					 | 
			
		
				| [13] | 
				
					BOBARU F, DUANGPANYA M. The peridynamic formulation for transient heat conduction[J]. International Journal of Heat and Mass Transfer, 2010, 53(19-20): 4047-4059. doi:  10.1016/j.ijheatmasstransfer.2010.05.024
					 | 
			
		
				| [14] | 
				
					LI H, ZHANG H W, ZHENG Y G, et al. A peridynamic model for the nonlinear static analysis of truss and tensegrity structures[J]. Computational Mechanics, 2016, 57(5): 843-858. doi:  10.1007/s00466-016-1264-4
					 | 
			
		
				| [15] | 
				
					ZHANG H W, LI H, YE H F, et al. A coupling peridynamic approach for the consolidation and dynamic analysis of saturated porous media[J]. Computational Mechanics, 2019, 64(4): 1097-1113. doi:  10.1007/s00466-019-01695-2
					 |