高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于智能算法的SGTR事故后安注过程自动控制研究

杜鸣 边舒介 牛玉广 袁金晓 陈日罡

杜鸣, 边舒介, 牛玉广, 袁金晓, 陈日罡. 基于智能算法的SGTR事故后安注过程自动控制研究[J]. 核动力工程, 2024, 45(S2): 189-196. doi: 10.13832/j.jnpe.2024.S2.0189
引用本文: 杜鸣, 边舒介, 牛玉广, 袁金晓, 陈日罡. 基于智能算法的SGTR事故后安注过程自动控制研究[J]. 核动力工程, 2024, 45(S2): 189-196. doi: 10.13832/j.jnpe.2024.S2.0189
Du Ming, Bian Shujie, Niu Yuguang, Yuan Jinxiao, Chen Rigang. Research on Automatic Control of SGTR Post-accident Safety Injection Process Based on Intelligent Algorithm[J]. Nuclear Power Engineering, 2024, 45(S2): 189-196. doi: 10.13832/j.jnpe.2024.S2.0189
Citation: Du Ming, Bian Shujie, Niu Yuguang, Yuan Jinxiao, Chen Rigang. Research on Automatic Control of SGTR Post-accident Safety Injection Process Based on Intelligent Algorithm[J]. Nuclear Power Engineering, 2024, 45(S2): 189-196. doi: 10.13832/j.jnpe.2024.S2.0189

基于智能算法的SGTR事故后安注过程自动控制研究

doi: 10.13832/j.jnpe.2024.S2.0189
详细信息
    作者简介:

    杜 鸣(1992—),男,讲师,现主要从事灵活智能控制算法方面的研究,E-mail: zjajdming@163.com

    通讯作者:

    边舒介,E-mail: 282227357@qq.com

  • 中图分类号: TL361

Research on Automatic Control of SGTR Post-accident Safety Injection Process Based on Intelligent Algorithm

  • 摘要: 当前核电站若发生蒸汽发生器传热管破裂(SGTR)事故,普遍采用人工调节控制的手段,其中安注过程的调节是操作员面临的难点之一。针对该难点,首先分析了对象的主要调节机理和特性,然后结合操作运行人员经验,总结设计了安注控制过程的解耦控制结构,并设计了相应的参数整定方法,融入自适应PID、智能前馈、强化学习等智能化元素,提出了针对安注控制过程的智能控制策略。为在某公司开发的M310堆型全范围模拟机上完成策略验证,开发了智能计算引擎,并在智能计算引擎上完成控制策略组态,通过MySQL方式完成了控制信号的实时通讯。通过M310堆型全范围模拟机不同破口事故的模拟和测试验证,本文提出的智能控制策略均能够实现安注控制过程的自动调节,实际降温速率偏差为降温速率设定值的5.89%,过冷度和稳压器水位调节的匹配效果较好,性能高于操纵员手动执行任务的平均水平。

     

  • 图  1  SGTR事故部分规程简化图

    Figure  1.  Simplified Diagram of SGTR Accident Procedures

    图  2  无人介入下SGTR中一回路降温速率变化

    Figure  2.  Variation of Cooling Rate of Primary Circuit in SGTR without Human Intervention

    图  3  无人介入下SGTR中PZR水位变化

    Figure  3.  Variation of Regulator Water Level in SGTR without Human Intervention

    图  4  SGTR事故后某次人工操作的一回路降温速率和GCT阀门开度

    GCT—旁路排放阀

    Figure  4.  Cooling Rate and GCT Valve Opening of a Manually Operated Primary Circuit After a SGTR Accident

    图  5  SGTR事故后某次人工操作的PZR水位和喷淋阀阀门开度

    Figure  5.  PZR Water Level and Sprinkler Valve Opening with a Manually Operation after SGTR Accident

    图  6  SGTR事故控制示意图

    Figure  6.  Schematic Diagram of SGTR Accident Control

    图  7  SGTR控制系统参数整定流程

    Figure  7.  Parameter Setting Process of SGTR Control System

    图  8  智能计算引擎与仿真系统通讯结构

    T—切换块

    Figure  8.  Communication Structure between Intelligent Computing Engine and Simulation System

    图  9  SG水位调节效果的对比

    Figure  9.  Comparison of Water Level Adjustment Effect of SG

    图  10  第一阶段过冷度与PZR水位调节效果的对比

    Figure  10.  Comparison between the First Stage Subcooling and the Water Level Regulation Effect of PZR

    图  11  第二阶段过冷度与PZR水位调节效果的对比

    Figure  11.  Comparison between the Second Stage Subcooling and the Water Level Regulation Effect of PZR

    图  12  一回路降温速率调节效果的对比

    Figure  12.  Comparison of Adjusting Effect of Primary Cooling Rate

    图  13  SG水位调节效果的对比

    Figure  13.  Comparison of Water Level Adjustment Effect of SG

    图  14  第一阶段过冷度和PZR水位调节效果的对比

    Figure  14.  Comparison between the First Stage Subcooling and the Water Level Regulation Effect of PZR

    图  15  第二阶段过冷度与PZR水位调节效果的对比

    Figure  15.  Comparison between the Second Stage Subcooling and the Water Level Regulation Effect of PZR

    图  16  一回路降温速率调节效果的对比

    Figure  16.  Comparison of Adjusting Effect of Primary Cooling Rate

  • [1] 郑文波. 核电厂运行安全常见问题及防控措施的探讨[J]. 科技资讯,2021, 19(26): 27-29.
    [2] 王丰景. 核电厂蒸汽发生器传热管破裂事故处理研究[J]. 中小企业管理与科技,2020(12): 156-157.
    [3] 胡伟晨,刘建全,赵鹏程,等. 基于RELAP5的蒸汽发生器传热管断裂事故分析[J]. 核科学与工程,2022, 42(2): 398-407. doi: 10.3969/j.issn.0258-0918.2022.02.022
    [4] 林萌,苏云,胡锐,等. 核电站工程模拟器用于SGTR事故仿真分析研究[J]. 原子能科学技术,2005, 39(3): 240-245. doi: 10.3969/j.issn.1000-6931.2005.03.012
    [5] 石俊英. WWER-1000型核电站SGTR事故分析[J]. 核动力工程,2002, 23(2): 51-55. doi: 10.3969/j.issn.0258-0926.2002.02.011
    [6] 张仕玉. 核电厂蒸汽发生器传热管破裂事故处理策略分析[J]. 河南科技,2019(7): 49-50. doi: 10.3969/j.issn.1003-5168.2019.07.022
    [7] 段智勇,刘永阔,夏虹,等. 核电站故障诊断与故障程度评估方法[J]. 应用科技,2016, 43(4): 1-5.
    [8] GURSEL E, REDDY B, KHOJANDI A, et al. Using artificial intelligence to detect human errors in nuclear power plants: A case in operation and maintenance[J]. Nuclear Engineering and Technology, 2023, 55(2): 603-622. doi: 10.1016/j.net.2022.10.032
    [9] 沈学泽,张力,青涛,等. 核电厂事故规程信息化系统对操纵员工作负荷的影响研究[J]. 工业工程,2022, 25(6): 146-151,159. doi: 10.3969/j.issn.1007-7375.2022.06.017
    [10] STOJANOVIC L, DINIC M, STOJANOVIC N, et al. Big-data-driven anomaly detection in industry (4.0): An approach and a case study[C]//2016 IEEE International Conference on Big Data (Big Data). Washington, DC, USA: IEEE, 2016.
    [11] ZHAO K. An integrated approach to performance monitoring and fault diagnosis of nuclear power systems[D]. Knoxville: University of Tennessee, 2005.
    [12] MA J P, JIANG J. Applications of fault detection and diagnosis methods in nuclear power plants: A review[J]. Progress in Nuclear Energy, 2011, 53(3): 255-266. doi: 10.1016/j.pnucene.2010.12.001
    [13] LIU F, ZHANG Z J, PENG M J. Research on the computerized symptom-oriented procedures of nuclear power plants[C]//16th International Conference on Nuclear Engineering. Orlando: ASME, 2008.
    [14] 刘立欣,王喆. 核电厂SGTR规程优化研究[J]. 核动力工程,2022, 43(4): 126-130. doi: 10.13832/j.jnpe.2022.04.0126.
    [15] 刘海宇,李力,李骜. 基于任务分析的核电厂计算机化运行规程人机界面研究[J]. 核科学与工程,2021, 41(3): 649-656. doi: 10.3969/j.issn.0258-0918.2021.03.029
    [16] LIU L X. Research on impact of pressurizer heater block on SGTR overfill analysis[C]//2017 25th International Conference on Nuclear Engineering. Shanghai: American Society of Mechanical Engineers, 2017.
    [17] LEE S, KIM J. Design of computerized operator support system for technical specification monitoring[J]. Annals of Nuclear Energy, 2022, 165: 108661. doi: 10.1016/j.anucene.2021.108661
    [18] KIM H, ARIGI A M, KIM J. Development of a diagnostic algorithm for abnormal situations using long short-term memory and variational autoencoder[J]. Annals of Nuclear Energy, 2021, 153: 108077. doi: 10.1016/j.anucene.2020.108077
    [19] HSIEH M H, HWANG S L, LIU K H, et al. A decision support system for identifying abnormal operating procedures in a nuclear power plant[J]. Nuclear Engineering and Design, 2012, 249: 413-418. doi: 10.1016/j.nucengdes.2012.04.009
  • 加载中
图(16)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  8
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-15
  • 修回日期:  2024-09-06
  • 刊出日期:  2025-01-06

目录

    /

    返回文章
    返回