[1] |
LIU R Z, LIU B, ZHANG K H, et al. High temperature oxidation behavior of SiC coating in TRISO coated particles[J]. Journal of Nuclear Materials, 2014, 453(1-3): 107-114. doi: 10.1016/j.jnucmat.2014.06.055
|
[2] |
刘荣正,刘马林,马景陶. 先进核燃料与材料[M]. 北京: 清华大学出版社,2022: 170-172.
|
[3] |
WU Z H, LIU W D, ZHANG L C, et al. Amorphization and dislocation evolution mechanisms of single crystalline 6H-SiC[J]. Acta Materialia, 2020, 182: 60-67. doi: 10.1016/j.actamat.2019.10.037
|
[4] |
ZHU B, ZHAO D, ZHAO H W. A study of deformation behavior and phase transformation in 4H-SiC during nanoindentation process via molecular dynamics simulation[J]. Ceramics International, 2019, 45(4): 5150-5157. doi: 10.1016/j.ceramint.2018.10.261
|
[5] |
TIAN Z G, XU X P, JIANG F, et al. Study on nanomechanical properties of 4H-SiC and 6H-SiC by molecular dynamics simulations[J]. Ceramics International, 2019, 45(17): 21998-22006. doi: 10.1016/j.ceramint.2019.07.214
|
[6] |
SUN S, PENG X H, XIANG H G, et al. Molecular dynamics simulation in single crystal 3C-SiC under nanoindentation: formation of prismatic loops[J]. Ceramics International, 2017, 43(18): 16313-16318. doi: 10.1016/j.ceramint.2017.09.003
|
[7] |
PAN C L, ZHANG L M, JIANG W L, et al. Grain size dependence of hardness in nanocrystalline silicon carbide[J]. Journal of the European Ceramic Society, 2020, 40(13): 4396-4402. doi: 10.1016/j.jeurceramsoc.2020.05.060
|
[8] |
CHAVOSHI S Z, XU S Z. Twinning effects in the single/nanocrystalline cubic silicon carbide subjected to nanoindentation loading[J]. Materialia, 2018, 3: 304-325. doi: 10.1016/j.mtla.2018.09.003
|
[9] |
THOMPSON A P, AKTULGA H M, BERGER R, et al. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales[J]. Computer Physics Communications, 2022, 271: 108171. doi: 10.1016/j.cpc.2021.108171
|
[10] |
STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012. doi: 10.1088/0965-0393/18/1/015012
|
[11] |
WU Z H, LIU W D, ZHANG L C. Effect of structural anisotropy on the dislocation nucleation and evolution in 6H-SiC under nanoindentation[J]. Ceramics International, 2019, 45(11): 14229-14237. doi: 10.1016/j.ceramint.2019.04.131
|
[12] |
VASHISHTA P, KALIA R K, NAKANO A, et al. Interaction potential for silicon carbide: a molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide[J]. Journal of Applied Physics, 2007, 101(10): 103515. doi: 10.1063/1.2724570
|
[13] |
ERHART P, ALBE K. Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide[J]. Physical Review B, 2005, 71(3): 035211. doi: 10.1103/PhysRevB.71.035211
|
[14] |
TERSOFF J. New empirical approach for the structure and energy of covalent systems[J]. Physical Review B, 1988, 37(12): 6991-7000. doi: 10.1103/PhysRevB.37.6991
|
[15] |
WU Z H, ZHANG L C. Mechanical properties and deformation mechanisms of surface-modified 6H-silicon carbide[J]. Journal of Materials Science & Technology, 2021, 90: 58-65.
|
[16] |
XUE L H, FENG G, LIU S. Molecular dynamics study of temperature effect on deformation behavior of m-plane 4H-SiC film by nanoindentation[J]. Vacuum, 2022, 202: 111192. doi: 10.1016/j.vacuum.2022.111192
|
[17] |
SHIH C J, MEYERS M A, NESTERENKO V F, et al. Damage evolution in dynamic deformation of silicon carbide[J]. Acta Materialia, 2000, 48(9): 2399-2420. doi: 10.1016/S1359-6454(99)00409-7
|
[18] |
GOEL S, STUKOWSKI A, LUO X C, et al. Anisotropy of single-crystal 3C-SiC during nanometric cutting[J]. Modelling and Simulation in Materials Science and Engineering, 2013, 21(6): 065004. doi: 10.1088/0965-0393/21/6/065004
|
[19] |
LIAO F, GIRSHICK S L, MOOK W M, et al. Superhard nanocrystalline silicon carbide films[J]. Applied Physics Letters, 2005, 86(17): 171913. doi: 10.1063/1.1920434
|
[20] |
XUE L H, FENG G, WU G, et al. Study of deformation mechanism of structural anisotropy in 4H-SiC film by nanoindentation[J]. Materials Science in Semiconductor Processing, 2022, 146: 106671. doi: 10.1016/j.mssp.2022.106671
|