高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工智能技术在反应堆中子学分析中的应用研究进展

吴宏春 雷铠灰 申靖文

吴宏春, 雷铠灰, 申靖文. 人工智能技术在反应堆中子学分析中的应用研究进展[J]. 核动力工程, 2025, 46(1): 1-12. doi: 10.13832/j.jnpe.2025.01.0001
引用本文: 吴宏春, 雷铠灰, 申靖文. 人工智能技术在反应堆中子学分析中的应用研究进展[J]. 核动力工程, 2025, 46(1): 1-12. doi: 10.13832/j.jnpe.2025.01.0001
Wu Hongchun, Lei Kaihui, Shen Jingwen. Research Progress in the Application of Artificial Intelligence in Reactor Neutron Analysis[J]. Nuclear Power Engineering, 2025, 46(1): 1-12. doi: 10.13832/j.jnpe.2025.01.0001
Citation: Wu Hongchun, Lei Kaihui, Shen Jingwen. Research Progress in the Application of Artificial Intelligence in Reactor Neutron Analysis[J]. Nuclear Power Engineering, 2025, 46(1): 1-12. doi: 10.13832/j.jnpe.2025.01.0001

人工智能技术在反应堆中子学分析中的应用研究进展

doi: 10.13832/j.jnpe.2025.01.0001
基金项目: 国家自然科学基金项目(12375175)
详细信息
    作者简介:

    吴宏春(1964—),男,教授,现主要从事核反应堆物理分析研究,E-mail: hcwu@xjtu.edu.cn

    通讯作者:

    吴宏春. E-mail: hcwu@xjtu.edu.cn

  • 中图分类号: TL334

Research Progress in the Application of Artificial Intelligence in Reactor Neutron Analysis

  • 摘要: 在全球科学智能研究与应用的浪潮下,人工智能技术已在反应堆中子学分析的各个环节得到应用,以增强中子学分析的智能化、精细化和高效化。本文对近年来人工智能技术在反应堆中子学分析中的应用研究进展进行综述,以期为推进反应堆数智化发展提供一定的借鉴和参考。为便于读者阅读,首先介绍了人工智能方法的基本分类及其特点;然后分别介绍了中子学分析的核数据评价处理、问题建模、方程数值求解以及输运结果应用四个主要环节的应用研究情况,并分析了其关键技术;最后从模型、数据和应用安全三个方面总结了人工智能技术在中子学分析计算中存在的问题,并给出了相应的研究建议与思考。

     

  • 图  1  人工智能方法分类

    KAN—Kolmogorov-Arnold 网络;FCN—全连接神经网络;CNN—卷积神经网络;RNN—循环神经网络;GNN—图神经网络;SVM—支持向量机;KNN—K最近邻方法

    Figure  1.  Classification of Artificial Intelligence Methods

    图  2  人工智能在核数据评价处理中的应用

    Figure  2.  Application of AI Methods in Nuclear Data Evaluation

    图  3  人工智能辅助工程建模

    Figure  3.  AI-assisted Engineering Modeling

    图  4  基于人工智能的输运方程数值求解

    Figure  4.  Numerical Solution of Transport Equation Based on AI Methods

    图  5  输运结果耦合应用

    Figure  5.  Coupling and Application of Transport Results

  • [1] 吴宏春. 高等核反应堆物理[M]. 北京: 科学出版社,2023: 4-39.
    [2] 邓力,李刚. 粒子输运问题的蒙特卡罗模拟方法与应用(上册)[M]. 北京: 科学出版社,2019: 42-86.
    [3] BI K F, XIE L X, ZHANG H H, et al. Accurate medium-range global weather forecasting with 3D neural networks[J]. Nature, 2023, 619(7970): 533-538. doi: 10.1038/s41586-023-06185-3
    [4] JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589.
    [5] ZHANG L W, WANG Z Y, ZHANG Q X, et al. CLAY: a controllable large-scale generative model for creating high-quality 3D assets[J]. ACM Transactions on Graphics (TOG), 2024, 43(4): 120.
    [6] BROOKS T, PEEBLES B, HOLMES C, et al. Video generation models as world simulators[EB/OL].(2024-02-15)[2024-10-25]. https://openai.com/index/video-generation-models-as-world-simulators/.
    [7] YU J, LU L, MENG X H, et al. Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 393: 114823. doi: 10.1016/j.cma.2022.114823
    [8] LI Z Y, KOVACHKI N B, AZIZZADENESHELI K, et al. Fourier neural operator for parametric partial differential equations[C]//9th International Conference on Learning Representations, ICLR 2021. Virtual Event, Austria, 2021.
    [9] PENG B, WEI Y, QIN Y, et al. Machine learning-enabled constrained multi-objective design of architected materials[J]. Nature Communications, 2023, 14(1): 6630. doi: 10.1038/s41467-023-42415-y
    [10] GEBAUER N W A, GASTEGGER M, HESSMANN S S P, et al. Inverse design of 3D molecular structures with conditional generative neural networks[J]. Nature Communications, 2022, 13(1): 973. doi: 10.1038/s41467-022-28526-y
    [11] 中国电子技术标准化研究院. 人工智能标准化白皮书(2018版)20180117(3)[R]. 北京: 中国电子技术标准化研究院,2018.
    [12] SUTTON R S, BARTO A G. Reinforcement learning: an introduction[M]. 2nd ed. Cambridge: The MIT Press, 2018: 1-22.
    [13] 李航. 机器学习方法[M]. 北京: 清华大学出版社,2022: 415-446.
    [14] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80. doi: 10.1109/TNN.2008.2005605
    [15] MICHELI A. Neural network for graphs: a contextual constructive approach[J]. IEEE Transactions on Neural Networks, 2009, 20(3): 498-511. doi: 10.1109/TNN.2008.2010350
    [16] BRONSTEIN M M, BRUNA J, LECUN Y, et al. Geometric deep learning: going beyond euclidean data[J]. IEEE Signal Processing Magazine, 2017, 34(4): 18-42.
    [17] WU Z X, WANG J K, DU H Y, et al. Chemistry-intuitive explanation of graph neural networks for molecular property prediction with substructure masking[J]. Nature Communications, 2023, 14(1): 2585.
    [18] ALET F, JEEWAJEE A K, VILLALONGA M B, et al. Graph element networks: adaptive, structured computation and memory[C]//Proceedings of the 36th International Conference on Machine Learning. Long Beach: PMLR, 2019: 212-222.
    [19] LIU Z M, WANG Y X, VAIDYA S, et al. KAN: kolmogorov-arnold networks[J]. arXiv: 2404.19756, 2024.
    [20] LIU Z M, MA P C, WANG Y X, et al. KAN 2.0: kolmogorov-arnold networks meet science[J]. arXiv: 2408.10205, 2024.
    [21] LOVELL A, MOHAN A, TALOU P, et al. Constraining fission yields using machine learning[C]//5th International Workshop on Nuclear Data Evaluation for Reactor Applications. Aix-en-Provence: EPJ, 2019: 04006.
    [22] AKKOYUN S. Estimation of fusion reaction cross-sections by artificial neural networks[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2020, 462: 51-54.
    [23] RODRIGUEZ A, LAM S, HU M. Thermodynamic and transport properties of LiF and FLiBe molten salts with deep learning potentials[J]. ACS Applied Materials & Interfaces, 2021, 13(46): 55367-55379.
    [24] WANG H, ZHANG L F, HAN J Q, et al. DeePMD-kit: a deep learning package for many-body potential energy representation and molecular dynamics[J]. Computer Physics Communications, 2018, 228: 178-184.
    [25] THEODORIDIS S. Machine learning: a bayesian and optimization perspective[M]. 2nd ed. Amsterdam: Elsevier, 2020: 27-28.
    [26] WANG Z A, PEI J C, LIU Y, et al. Bayesian evaluation of incomplete fission yields[J]. Physical Review Letters, 2019, 123(12): 122501. doi: 10.1103/PhysRevLett.123.122501
    [27] BOEHNLEIN A, DIEFENTHALER M, SATO N, et al. Colloquium: machine learning in nuclear physics[J]. Reviews of Modern Physics, 2022, 94(3): 031003. doi: 10.1103/RevModPhys.94.031003
    [28] CATACORA-RIOS M, KING G B, LOVELL A E, et al. Exploring experimental conditions to reduce uncertainties in the optical potential[J]. Physical Review C, 2019, 100(6): 064615. doi: 10.1103/PhysRevC.100.064615
    [29] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge: The MIT Press, 2016: 157-161.
    [30] MITRA S, CHOI H, LIU S S, et al. Unmasking correlations in nuclear cross sections with graph neural networks[J]. arXiv: 2404.02332, 2024.
    [31] DORVILLE J J C. Advancing nuclear reactor simulations using ray tracing, machine learning and kinematic models of energy deposition[D]. Golden: Colorado School of Mines, 2023.
    [32] CHAN Y M, DUFEK J. A deep-learning representation of multi-group cross sections in lattice calculations[J]. Annals of Nuclear Energy, 2024, 195: 110123. doi: 10.1016/j.anucene.2023.110123
    [33] DZIANISAU S, SAEJU K, LEE H C, et al. Development of an artificial neural network model for generating macroscopic cross-sections for RAST-AI[J]. Annals of Nuclear Energy, 2023, 186: 109777.
    [34] WANG S C, CAO L Z, LI Y Z, et al. An energy-group structure optimization from seven to four for PWR-core pin-by-pin calculation[J]. Nuclear Engineering and Design, 2023, 402: 112115. doi: 10.1016/j.nucengdes.2022.112115
    [35] 舒文玉. 多群屏蔽数据库制作方法研究及基于CENDL 3.2的自主化多群屏蔽库制作[D]. 西安: 西安交通大学,2022.
    [36] MASSONE M, GABRIELLI F, RINEISKI A. A genetic algorithm for multigroup energy structure search[J]. Annals of Nuclear Energy, 2017, 105: 369-387. doi: 10.1016/j.anucene.2017.03.022
    [37] WILSON P P H, TAUTGES T J, KRAFTCHECK J A, et al. Acceleration techniques for the direct use of CAD-based geometry in fusion neutronics analysis[J]. Fusion Engineering and Design, 2010, 85(10-12): 1759-1765. doi: 10.1016/j.fusengdes.2010.05.030
    [38] REGASSA HUNDE B, DEBEBE WOLDEYOHANNES A. Future prospects of computer-aided design (CAD) – a review from the perspective of artificial intelligence (AI), extended reality, and 3D printing[J]. Results in Engineering, 2022, 14: 100478.
    [39] CHEN T R, YU C N, HU Y Q, et al. Img2CAD: conditioned 3D CAD model generation from single image with structured visual geometry[J]. arXiv: 2410.03417, 2024.
    [40] YOU Y, UY M A, HAN J Q, et al. Img2CAD: reverse engineering 3D CAD models from images through VLM-assisted conditional factorization[J]. arXiv: 2408.01437, 2024.
    [41] HOANG L. 3D solid reconstruction from 2D orthographic views[M]//SOBOTA B, CVETKOVIĆ D. Mixed Reality and Three-Dimensional Computer Graphics. London: IntechOpen, 2020.
    [42] 王国忠,程梦云,龙鹏程,等. 基于相似性评价的辐射输运计算建模方法研究[J]. 核科学与工程,2015, 35(3): 458-463. doi: 10.3969/j.issn.0258-0918.2015.03.010
    [43] 罗月童. 模型变换技术及其在MCNP建模中的应用研究[D]. 合肥: 合肥工业大学,2005.
    [44] 郝丽,莫蓉,魏斌斌,等. 基于图谱理论和聚类的三维CAD模型分割方法: 中国,109241628B[P]. 2018-09-08.
    [45] LAMBOURNE J G, WILLIS K D D, JAYARAMAN P K, et al. BRepNet: a topological message passing system for solid models[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville: IEEE, 2021: 12768-12777.
    [46] LUO Y T, DU H, YAN Y M. MeshCNN-based BREP to CSG conversion algorithm for 3D CAD models and its application[J]. Nuclear Science and Techniques, 2022, 33(6): 74. doi: 10.1007/s41365-022-01063-5
    [47] HANOCKA R, HERTZ A, FISH N, et al. MeshCNN: a network with an edge[J]. ACM Transactions on Graphics, 2019, 38(4): 90.
    [48] 詹高扬. 面向设计重用的三维CAD模型检索方法研究[D]. 杭州: 杭州电子科技大学,2023.
    [49] 周波,郭正跃,韩承村,等. 基于图卷积网络的BREP→CSG转换方法及其应用研究[J]. 图学学报,2022, 43(1): 101-109.
    [50] DISSANAYAKE M W M G, PHAN-THIEN N. Neural-network-based approximations for solving partial differential equations[J]. Communications in Numerical Methods in Engineering, 1994, 10(3): 195-201.
    [51] RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045
    [52] CUOMO S, DI COLA V S, GIAMPAOLO F, et al. Scientific machine learning through physics–informed neural networks: where we are and what’s next[J]. Journal of Scientific Computing, 2022, 92(3): 88. doi: 10.1007/s10915-022-01939-z
    [53] XIE Y C, WANG Y H, MA Y. Boundary dependent physics-informed neural network for solving neutron transport equation[J]. Annals of Nuclear Energy, 2024, 195: 110181. doi: 10.1016/j.anucene.2023.110181
    [54] XIE Y C, CHI H H, WANG Y H, et al. Physics-specialized neural network with hard constraints for solving multi-material diffusion problems[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 430: 117223.
    [55] XIE Y C, MA Y H, WANG Y. Automatic boundary fitting framework of boundary dependent physics-informed neural network solving partial differential equation with complex boundary conditions[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 414: 116139. doi: 10.1016/j.cma.2023.116139
    [56] 刘东,王雪强,张斌,等. 深度学习方法求解中子输运方程的微分变阶理论[J]. 原子能科学技术,2023, 57(5): 946-959. doi: 10.7538/yzk.2023.youxian.0002
    [57] KHARAZMI E, ZHANG Z Q, KARNIADAKIS G E M. hp-VPINNs: variational physics-informed neural networks with domain decomposition[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 374: 113547. doi: 10.1016/j.cma.2020.113547
    [58] 刘东,罗琦,唐雷,等. 基于PINN深度机器学习技术求解多维中子学扩散方程[J]. 核动力工程,2022, 43(2): 1-8.
    [59] YANG Y, GONG H L, ZHANG S Q, et al. A data-enabled physics-informed neural network with comprehensive numerical study on solving neutron diffusion eigenvalue problems[J]. Annals of Nuclear Energy, 2023, 183: 109656. doi: 10.1016/j.anucene.2022.109656
    [60] E W N, YU B. The deep ritz method: a deep learning-based numerical algorithm for solving variational problems[J]. Communications in Mathematics and Statistics, 2018, 6(1): 1-12.
    [61] YANG Q H, YANG Y, DENG Y T, et al. Physics-constrained neural network for solving discontinuous interface K-eigenvalue problem with application to reactor physics[J]. Nuclear Science and Techniques, 2023, 34(10): 161. doi: 10.1007/s41365-023-01313-0
    [62] LU L, MENG X H, MAO Z P, et al. DeepXDE: a deep learning library for solving differential equations[J]. SIAM Review, 2021, 63(1): 208-228. doi: 10.1137/19M1274067
    [63] WANG S F, TENG Y J, PERDIKARIS P. Understanding and mitigating gradient flow pathologies in physics-informed neural networks[J]. SIAM Journal on Scientific Computing, 2021, 43(5): A3055-A3081. doi: 10.1137/20M1318043
    [64] LIU L, ZENG T Y, ZHANG Z C. A deep neural network approach on solving the linear transport model under diffusive scaling[J]. arXiv: 2102.12408, 2021.
    [65] WANG J Y, PENG X J, CHEN Z, et al. Surrogate modeling for neutron diffusion problems based on conservative physics-informed neural networks with boundary conditions enforcement[J]. Annals of Nuclear Energy, 2022, 176: 109234. doi: 10.1016/j.anucene.2022.109234
    [66] JAGTAP A D, KHARAZMI E, KARNIADAKIS G E. Conservative physics-informed neural networks on discrete domains for conservation laws: applications to forward and inverse problems[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 365: 113028.
    [67] JAGTAP A D, KAWAGUCHI K, EM KARNIADAKIS G. Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476(2239): 20200334. doi: 10.1098/rspa.2020.0334
    [68] WANG S F, YU X L, PERDIKARIS P. When and why PINNs fail to train: a neural tangent kernel perspective[J]. Journal of Computational Physics, 2022, 449: 110768. doi: 10.1016/j.jcp.2021.110768
    [69] XU Z Q J, ZHANG T Y, LUO T, et al. Frequency principle: Fourier analysis sheds light on deep neural networks[J]. Communications in Computational Physics, 2020, 28(5): 1746-1767. doi: 10.4208/cicp.OA-2020-0085
    [70] RAHAMAN N, BARATIN A, ARPIT D, et al. On the spectral bias of neural networks[C]//Proceedings of the 36th International Conference on Machine Learning. Long Beach: PMLR, 2019: 5301-5310.
    [71] LI X Q, ZHENG Y Q, DU X N, et al. A new surrogate method for the neutron kinetics calculation of nuclear reactor core transients[J]. Nuclear Engineering and Technology, 2024, 56(9): 3571-3584.
    [72] 马锐垚,王鑫,李树,等. 基于神经网络的粒子输运问题高效计算方法[J]. 物理学报,2024, 73(7): 072802.
    [73] 刘家旺,刘宙宇,曹良志,等. 基于深度学习的中子输运求解方法研究[C]//第二十届反应堆数值计算与粒子输运学术会议暨2024年反应堆物理会议. 哈尔滨,中国,2024.
    [74] LEI K H, WU H C, LIU Z Y, et al. SN-MscaleDNN: a coupling approach for rapid shielding-scheme evaluation of micro gas-cooled reactor in the large design-parameter space[J]. Annals of Nuclear Energy, 2024, 196: 110241. doi: 10.1016/j.anucene.2023.110241
    [75] BERRY J, ROMANO P, OSBORNE A. Upsampling monte carlo reactor simulation tallies in depleted sodium-cooled fast reactor assemblies using a convolutional neural network[J]. Energies, 2024, 17(9): 2177. doi: 10.3390/en17092177
    [76] OSBORNE A, DORVILLE J, ROMANO P. Upsampling Monte Carlo neutron transport simulation tallies using a convolutional neural network[J]. Energy and AI, 2023, 13: 100247. doi: 10.1016/j.egyai.2023.100247
    [77] 张俊达,刘晓晶,熊进标,等. 基于神经网络的热管反应堆多物理场耦合快速预测[J]. 原子能科学技术,2024, 58(6): 1218-1225.
    [78] WAN C H, LEI K H, LI Y S. Optimization method of fuel-reloading pattern for PWR based on the improved convolutional neural network and genetic algorithm[J]. Annals of Nuclear Energy, 2022, 171: 109028.
    [79] 雷铠灰,曹良志,万承辉,等. 基于深度卷积神经网络的堆芯换料方案性能评价研究[J]. 原子能科学技术,2021, 55(2): 279-285. doi: 10.7538/yzk.2020.youxian.0111
    [80] SONG Y M, MAO J, ZHANG Z H, et al. A novel multi-objective shielding optimization method: DNN-PCA-NSGA-II[J]. Annals of Nuclear Energy, 2021, 161: 108461. doi: 10.1016/j.anucene.2021.108461
    [81] 于志翔,邹树梁,徐守龙,等. 基于BP神经网络的船用反应堆屏蔽设计快速计算功能研究[J]. 核电子学与探测技术,2016, 36(2): 209-213. doi: 10.3969/j.issn.0258-0934.2016.02.022
    [82] GONG H L, CHENG S B, CHEN Z, et al. Data-enabled physics-informed machine learning for reduced-order modeling digital twin: application to nuclear reactor physics[J]. Nuclear Science and Engineering, 2022, 196(6): 668-693.
    [83] 康崇禄. 蒙特卡罗方法理论和应用[M]. 北京: 科学出版社,2015: 142-143.
    [84] BUTT M K, CAO L Z, WAN C H, et al. Integrating the deep learning and multi-objective genetic algorithm to the reloading pattern optimization of HPR1000 reactor core[J]. Nuclear Engineering and Design, 2024, 428: 113531. doi: 10.1016/j.nucengdes.2024.113531
    [85] CHEN Z P, ZHANG Z Y, XIE J S, et al. Multi-objective optimization strategies for radiation shielding design with genetic algorithm[J]. Computer Physics Communications, 2021, 260: 107267. doi: 10.1016/j.cpc.2020.107267
    [86] WU X, YANG Y W, HAN S, et al. Multi-objective optimization method for nuclear reactor radiation shielding design based on PSO algorithm[J]. Annals of Nuclear Energy, 2021, 160: 108404. doi: 10.1016/j.anucene.2021.108404
    [87] RADAIDEH M I, WOLVERTON I, JOSEPH J, et al. Physics-informed reinforcement learning optimization of nuclear assembly design[J]. Nuclear Engineering and Design, 2021, 372: 110966. doi: 10.1016/j.nucengdes.2020.110966
    [88] RADAIDEH M I, SHIRVAN K. Rule-based reinforcement learning methodology to inform evolutionary algorithms for constrained optimization of engineering applications[J]. Knowledge-Based Systems, 2021, 217: 106836. doi: 10.1016/j.knosys.2021.106836
    [89] 雷铠灰,吴宏春,贺清明,等. 基于多频率尺度神经网络和改进型NSGA-II算法的气冷微堆屏蔽多目标优化方法研究[C]//第二十届反应堆数值计算与粒子输运学术会议暨2024年反应堆物理会议. 哈尔滨,黑龙江,2024.
    [90] REN K, ZHENG T H, QIN Z, et al. Adversarial attacks and defenses in deep learning[J]. Engineering, 2020, 6(3): 346-360. doi: 10.1016/j.eng.2019.12.012
    [91] GOODFELLOW I, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[C]//3rd International Conference on Learning Representations. San Diego: ICLR, 2015.
    [92] 张恒,吕雪,刘东,等. 核电人工智能应用: 现状、挑战和机遇[J]. 核动力工程,2023, 44(1): 1-8.
    [93] JACOT A, GABRIEL F, HONGLER C. Neural tangent kernel: convergence and generalization in neural networks[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal: Curran Associates Inc. , 2018: 8580-8589.
    [94] YANG Q, LIU Y, CHEN T J, et al. Federated machine learning: concept and applications[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2019, 10(2): 12.
  • 加载中
图(5)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  17
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-25
  • 录用日期:  2024-11-07
  • 修回日期:  2024-11-15
  • 刊出日期:  2025-02-15

目录

    /

    返回文章
    返回