Holddown Force Analysis Model Research of Fuel Assembly Leaf Springs with Varied Stiffness
-
摘要: 为开展压水堆燃料组件变刚度板弹簧的压紧力分析,本文在分析了传统板弹簧加卸载过程的基础上,综合考虑温度变化、辐照生长和辐照松弛等影响因素,进一步分析了变刚度板弹簧在不同加卸载过程中的压紧力变化,给出了变刚度板弹簧的全过程载荷-变形曲线。分析结果表明:燃料组件辐照生长增加了变刚度板弹簧的变形,但不改变加卸载刚度曲线;变刚度板弹簧的辐照松弛过程可分解为2组板弹簧的并联,并分开考虑其辐照松弛量,刚度曲线特性保持不变;当燃料组件辐照生长量大于板弹簧辐照松弛量时,板弹簧的塑性变形将增加。Abstract: In order to conduct the holddown force analysis of the leaf spring with varied stiffness of PWR fuel assembly, this paper firstly analyzes the loading and unloading processes of the traditional leaf spring, and then comprehensively considers the influence factors such as temperature change, irradiation growth and irradiation relaxation. The holddown force change of the leaf spring with varied stiffness during different loading and unloading processes is further analyzed, and the load-deformation curve of the leaf spring with varied stiffness in the whole process is given. The analysis results show that the irradiated growth of fuel assembly increases the deformation of the leaf spring, but does not change the loading and unloading stiffness curves. The radiation relaxation process of the leaf spring with varied stiffness can be divided into two groups of leaf springs in parallel. Their radiation relaxation amounts are considered separately, and the stiffness curve characteristics remain unchanged. When the radiation growth of fuel assembly is greater than the radiation relaxation of the leaf spring, the plastic deformation of the leaf spring will increase.
-
Key words:
- Fuel assembly /
- Varied stiffness /
- Leaf spring /
- Holddown force
-
图 1 变刚度板弹簧与传统板弹簧结构对比示意图[3]
Figure 1. Comparison of Leaf Spring with Varied Stiffness and Traditional Leaf Spring
-
[1] 李蓓,黄春兰,唐杨. 压水堆核燃料组件压紧系统研究进展[J]. 科学技术创新,2022(18): 157-162. doi: 10.3969/j.issn.1673-1328.2022.18.040 [2] 张林,蒲曾坪,冯琳娜. 燃料组件压紧部件分析研究[J]. 核动力工程,2013, 34(S1): 148-151. [3] 蒲曾坪,耿飞,黄春兰,等. 压水堆燃料组件板弹簧压紧系统性能评价方法研究[J]. 核动力工程,2017, 38(5): 178-181. [4] SONG K N, KANG H S, YOON K H. Derivation of the extended elastic stiffness formula of the holddown spring assembly comprised of several leaves[J]. Journal of the Korean Nuclear Society, 1999, 31(3): 328-334. [5] 金渊. 燃料组件压紧板弹簧的刚度分析模型研究[J]. 核动力工程,2016, 37(4): 28-33. [6] 任啟森. 压水堆燃料组件压紧板弹簧刚度简化模型研究[J]. 核科学与工程,2020, 40(6): 1060-1064. [7] 王浩煜,秦勉,蒲曾坪,等. 堆内环境下燃料组件板弹簧压紧系统压紧力数值模拟研究[J]. 核动力工程,2021, 42(S2): 93-98. [8] 蒲曾坪,张吉斌,齐敏,等. 燃料组件板弹簧压紧系统非线性特征数值研究[J]. 核动力工程,2015, 36(S2): 87-89. [9] 杨泞瑞,吴兴文,梁树林,等. 基于Johnson-Cook本构模型的压紧板弹簧刚度特性研究[J]. 核动力工程,2022, 43(4): 91-98. [10] 何大明,李垣明,蒲曾坪,等. 基于粒子群智能优化算法的板弹簧特性优化研究[J]. 核动力工程,2021, 42(5): 261-265. [11] 冉仁杰,黄山,张笑天,等. 一种基于Workbench的板弹簧压紧系统优化设计方法[J]. 科技视界,2020(15): 137-139.