Advance Search
Volume 42 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
Lu Junjing, Mao Yawei, Zhang Tianqi, Zhu Bolin, Yang Xiaoming, Ma Rubing. Study on Gravity Sedimentation of Multicomponent Hygroscopic Aerosols in Reactor Severe Accident[J]. Nuclear Power Engineering, 2021, 42(4): 80-85. doi: 10.13832/j.jnpe.2021.04.0080
Citation: Lu Junjing, Mao Yawei, Zhang Tianqi, Zhu Bolin, Yang Xiaoming, Ma Rubing. Study on Gravity Sedimentation of Multicomponent Hygroscopic Aerosols in Reactor Severe Accident[J]. Nuclear Power Engineering, 2021, 42(4): 80-85. doi: 10.13832/j.jnpe.2021.04.0080

Study on Gravity Sedimentation of Multicomponent Hygroscopic Aerosols in Reactor Severe Accident

doi: 10.13832/j.jnpe.2021.04.0080
  • Received Date: 2020-12-18
  • Rev Recd Date: 2021-03-10
  • Publish Date: 2021-08-15
  • In the event of a severe accident, the multicomponent hygroscopic aerosols in the containment will absorb water under the high humidity condition, thereby influencing the gravity sedimentation behavior. In this study, a physical model of the equilibrium particle diameter of the multicomponent hygroscopic aerosol particles was developed through theoretical analysis, and it was also validated by experimental results. The model focuses on the effect of solubility on the hygroscopic process and explains the reason why the multicomponent hygroscopic particles grow along a discontinuity curve. Based on a typical gigawatt-class pressurized water reactor, the effects of relative humidity, dry particle diameter and mass fraction of hygroscopic components on the removal coefficient of the gravity sedimentation were investigated. The results show that the velocity of the gravity sedimentation will significantly increase, only if the aerosol particles grow to a certain degree. Only when the humidity is more than a certain value, the sedimentation process of the pure hygroscopic aerosol particles with a dry particle diameter exceeding 0.1 μm will accelerate due to hygroscopicity, and this humidity limit will decrease as the dry particle diameter increases. With the progress of the accident, the mass fraction of non-hygroscopic components in the aerosol particles gradually decreases, leading the above-mentioned humidity limit increasing and the acceleration of gravity sedimentation due to the hygroscopicity decreasing in the same humidity.

     

  • loading
  • [1]
    SEHGAL B R. Nuclear safety in light water reactors: severe accident phenomenology[M]. Waltham: Academic Press, 2012: 496-498.
    [2]
    Organization for Economic Co-operation and Development. State-of-the-art report on nuclear aerosols: NEA/CSNI/R(2009)5[R]. Paris: OECD, Nuclear Energy Agency, 2009.
    [3]
    卢俊晶,张天琦,杨小明,等. 严重事故下吸湿性气溶胶的自然去除研究[J]. 核动力工程,2020, 41(1): 145-149.
    [4]
    SOFFER L, BURSON S B, FERRELL C M, et al. Accident source terms for light-water nuclear power plants: NUREG-1465[R]. Washington, DC: U. S. Nuclear Regulatory Commission, 1995.
    [5]
    FUKUTA N, WALTER L A. Kinetics of hydrometeor growth from a vapor-spherical model[J]. Journal of the Atmospheric Sciences, 1970, 27(8): 1160-1172. doi: 10.1175/1520-0469(1970)027<1160:KOHGFA>2.0.CO;2
    [6]
    JOKINIEMI J. Effect of selected binary and mixed solutions on steam condensation and aerosol behavior in containment[J]. Aerosol Science and Technology, 1990, 12(4): 891-902. doi: 10.1080/02786829008959401
    [7]
    BRECHTEL F J, KREIDENWEIS S M. Predicting particle critical supersaturation from hygroscopic growth measurements in the humidified TDMA. Part I: theory and sensitivity studies[J]. Journal of the Atmospheric Sciences, 2000, 57(12): 1854-1871. doi: 10.1175/1520-0469(2000)057<1854:PPCSFH>2.0.CO;2
    [8]
    TANG I N. Phase transformation and growth of aerosol particles composed of mixed salts[J]. Journal of Aerosol Science, 1976, 7(5): 361-371. doi: 10.1016/0021-8502(76)90022-7
    [9]
    TANG I N, MUNKELWITZ H R. Aerosol phase transFormation and growth in the atmosphere[J]. Journal of Applied Meteorology and Climatology, 1994, 33(7): 791-796. doi: 10.1175/1520-0450(1994)033<0791:APTAGI>2.0.CO;2
    [10]
    TANG I N, MUNKELWITZ H R. Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols[J]. Atmospheric Environment Part A General Topics, 1993, 27(4): 467-473. doi: 10.1016/0960-1686(93)90204-C
    [11]
    LU J J, Zhang T Q, YU M R, et al. Study on aerosol removal by a passive containment cooling system[C]//27th International Conference on Nuclear Engineering. Tukuba: The Japan Society of Mechanical Engineers, 2019.
    [12]
    U. S. Nuclear Regulatory Commission. Technical bases for estimating fission product behavior during LWR Accidents: NUREG-0772[R]. Washington, DC: Nuclear Regulatory Commission, 1981.
    [13]
    林诚格. 非能动安全先进压水堆核电技术(中册)[M]. 北京: 原子能出版社, 2010: 483.
    [14]
    付亚茹,耿珺,孙大威,等. AP1000核电厂安全壳内气溶胶自然去除分析[J]. 原子能科学技术,2017, 51(4): 700-705. doi: 10.7538/yzk.2017.51.04.0700
    [15]
    HAYNES W M. CRC handbook of chemistry and physics[M]. 96th ed. New York: CRC Press, 2015: 57.
    [16]
    MISHRA G, MANDARIYA A K, TRIPATHI S N, et al. Hygroscopic growth of CsI and CsOH particles in context of nuclear reactor accident research[J]. Journal of Aerosol Science, 2019(132): 60-69. doi: 10.1016/j.jaerosci.2019.03.008
    [17]
    孙雪霆,陈林林,魏严凇,等. 非能动安全壳冷却对严重事故下气溶胶沉积影响分析[J]. 原子能科学技术,2016, 50(12): 2219-2223. doi: 10.7538/yzk.2016.50.12.2219
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (363) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return