Advance Search
Volume 42 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
Huang Yongzhong, Li Quan, Li Yuanming, Pang Hua, Lu Huaiyu, Liu Zhenhai, Qi Feipeng. Research on Analysis Method for Performance of Fuel Element Based on Thermal-Fluid-Solid Coupling[J]. Nuclear Power Engineering, 2021, 42(4): 112-118. doi: 10.13832/j.jnpe.2021.04.0112
Citation: Huang Yongzhong, Li Quan, Li Yuanming, Pang Hua, Lu Huaiyu, Liu Zhenhai, Qi Feipeng. Research on Analysis Method for Performance of Fuel Element Based on Thermal-Fluid-Solid Coupling[J]. Nuclear Power Engineering, 2021, 42(4): 112-118. doi: 10.13832/j.jnpe.2021.04.0112

Research on Analysis Method for Performance of Fuel Element Based on Thermal-Fluid-Solid Coupling

doi: 10.13832/j.jnpe.2021.04.0112
  • Received Date: 2019-11-18
  • Rev Recd Date: 2020-06-01
  • Publish Date: 2021-08-15
  • The existed fuel performance analysis tools are not applicable to the hollow prism fuel with special structure and operation conditions, so a new method is needed to assist the fuel design and evaluation. In this paper, a 3D fluid-thermal-solid coupling analysis method was established based on the COMSOL software by conjugate heat transfer technology and the equivalent material property models for particle reinforced composites, and had been verified with the General Electric data. Temperature and thermal stress of fuel elements in different sizes and axial power distributions were calculated with this method. The results show that maximum temperature exists at the side edge of prism, and maximum thermal stress exists at the thinnest inner wall. The thinner and longer fuel has the smaller maximum thermal stress and temperature. Flatting the axial power distribution in the entrance region can decrease the maximum thermal stress and temperature slightly. This analysis method can be used to optimize the design of the hollow prism fuel element.

     

  • loading
  • [1]
    HANDWERK C S, DRISCOLL M J, HEJZLAR P. Optimized core design of a supercritical carbon dioxide-cooled fast reactor[J]. Nuclear Technology, 2008, 164(3): 320-336. doi: 10.13182/NT08-A4030
    [2]
    苏著亭, 杨继材, 柯国土. 空间核动力[M]. 上海: 上海交通大学出版社, 2016: 34-93.
    [3]
    POETTE C, BRUN-MAGAUD V, MORIN F, et al. Allegro: the European gas fast reactor demonstrator project[C]//17th International Conference on Nuclear Engineering. Brussels, Belgium: ASME, 2009: 815-822.
    [4]
    ZHANG X S, SUN P W. Control system design of supercritical CO2 direct cycle gas fast reactor[C]//2017 25th International Conference on Nuclear Engineering. Shanghai, China: ASME, 2017: V009T15A022.
    [5]
    张作义,吴宗鑫,王大中,等. 我国高温气冷堆发展战略研究[J]. 中国工程科学,2019, 21(1): 12-19.
    [6]
    THORNTON G, ROTHSTEIN A J. Comprehensive technical report, general electric direct-air-cycle aircraft nuclear propulsion program, program summary and references[R]. Oak Ridge, USA: Office of Scientific and Technical Information, 1962: 89-132.
    [7]
    李冠兴, 武胜. 核材料[M]. 北京: 化学工业出版社, 2007: 316-353.
    [8]
    HALES J D, WILLIAMSON R L, NOVASCONE S R, et al. Multidimensional multiphysics simulation of TRISO particle fuel[J]. Journal of Nuclear Materials, 2013, 443(1-3): 531-543. doi: 10.1016/j.jnucmat.2013.07.070
    [9]
    刘佐民. 高温发汗润滑设计与控制[M]. 武汉: 武汉理工大学出版社, 2016: 120-130.
    [10]
    JACOUD J L. Description and qualification of the COPERNIC/TRANSURANUS fuel rod design code: TFJC-DC-1556[R]. France: Framatome, 2000
    [11]
    益小苏. 航空复合材料科学与技术[M]. 北京: 航空工业出版社, 2013: 207-210.
    [12]
    蔡志勇, 王日初. 快速凝固铝硅合金电子封装材料[M]. 长沙: 中南大学出版社, 2016: 118-120.
    [13]
    张能武. 常用材料速查速算手册[M]. 长沙: 湖南科学技术出版社, 2012: 740-742.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views (226) PDF downloads(95) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return