Advance Search
Volume 42 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
Li Jing, Wu Sajian, Yang Ying, Xiong Liangyin, Ma Haibin, Liu Shi. Study on Corrosion Resistance of ODS-FeCrAl Tube for ATF[J]. Nuclear Power Engineering, 2021, 42(4): 119-125. doi: 10.13832/j.jnpe.2021.04.0119
Citation: Li Jing, Wu Sajian, Yang Ying, Xiong Liangyin, Ma Haibin, Liu Shi. Study on Corrosion Resistance of ODS-FeCrAl Tube for ATF[J]. Nuclear Power Engineering, 2021, 42(4): 119-125. doi: 10.13832/j.jnpe.2021.04.0119

Study on Corrosion Resistance of ODS-FeCrAl Tube for ATF

doi: 10.13832/j.jnpe.2021.04.0119
  • Received Date: 2020-05-22
  • Rev Recd Date: 2020-06-22
  • Publish Date: 2021-08-15
  • Oxide dispersion strengthened (ODS) FeCrAl alloy is one of the candidate materials for Accident Tolerant Fuel (ATF) cladding tubedue to its excellent mechanical strength, creep resistance and radiation-swelling resistance at elevated temperatures. The corrosion behaviors of ODS-FeCrAl tube with 9.5 mm outside diameter and 0.3 mm wall thickness in static water at 360 ℃ and18.6 MPa for 100 days, in flowing aqueous solution containing 1200 ppm B and 2.2 ppm Li at 360℃ and 18.6 MPa for 100 days and in steam at 1200℃ and 0.1 MPa for 8 hours, were studied herein. The morphology, composition and element distribution of oxide film were analyzed by SEM, XPS and XRD respectively. The corrosion products are mainly Fe3O4, due to the low oxygen content in both aqueous environments at 360℃. And the weight gain is 0.036 mg/cm2 and 0.36 mg/cm2, which corresponding oxide film thickness is 0.072% and 0.72% of that of tube wall respectively. In the steam at 1200℃, owing to high temperature and sufficient oxygen content, α-Al2O3 oxide film with a mean thickness of 2.34 μm is dominant on the surface, delaying further the oxidation of the matrix.No observable cracks and voids are identified on the surface and the cross section of oxide filmsin all corrosive environments.In comparison with Zr-4 reference cladding, ODS-FeCrAl tube exhibits an outstanding high temperature oxidation and corrosion resistance.

     

  • loading
  • [1]
    TERRANI K A. Accident tolerant fuel cladding development: Promise, status, and challenges[J]. Journal of Nuclear and Materials, 2018(501): 13-30.
    [2]
    DRYEPONDT S, UNOCIC K A, HOELZER D T. et al Development of low-Cr ODS FeCrAl alloys for accident-tolerant fuel cladding[J]. Journal of Nuclear Materials, 2018(501): 59-71.
    [3]
    PINT B A, UNOCIC K A. Steam oxidation evaluation of Fe-Cr alloys for accident tolerant nuclear fuel cladding[J]. Oxidation of Metals, 2017, 87(1-2): 515-526.
    [4]
    WU S, LI J, LI W, et al. Characterization of oxide dispersoids and mechanical properties of 14Cr-ODS-FeCrAl alloys[J]. Journal of Alloys and Compounds, 2020(814): 152282.
    [5]
    李静, 吴飒建, 葛鹏, 等. 一种高温水蒸气腐蚀试验装置: 中国, ZL 201920633267.2[P]. 2020-03-31.
    [6]
    LIU T, WANG C, SHEN H, et al. The effects of Cr and Al concentrations on the oxidation behavior of oxide dispersion strengthened ferritic alloys[J]. Corrosion Science, 2013(76): 310-316.
    [7]
    BRIANT C L, LUTHRA K L. Surface segregation in MCrAIY alloys[J]. Metallurgical Transactions A, 1988, 19(8): 2099-2108. doi: 10.1007/BF02645212
    [8]
    CHEN R Y, YEUN W Y D. Review of the high-temperature oxidation of Iron and carbon steels in air or oxygen[J]. Oxidation of Metals, 2003, 59(5/6): 433-468. doi: 10.1023/A:1023685905159
    [9]
    KUANG W, WU X, HAN E H. Influence of dissolved oxygen concentration on the oxide film formed on 304 stainless steel in high temperature water[J]. Corrosion Science, 2012(63): 259-266.
    [10]
    周邦新,李强,姚美意,等. 锆-4合金在高压釜中腐蚀时氧化膜显微组织的演化[J]. 核动力工程,2005, 26(4): 364-371. doi: 10.3969/j.issn.0258-0926.2005.04.014
    [11]
    VANKEERBERGHEN M, WEYNS G, GAVRILOV S, et al. Crack propagation rate modelling for 316SS exposed to PWR-relevant conditions[J]. Journal of Nuclear Materials, 2009(384): 274-285.
    [12]
    TERRANI K A, PINT B A, KIM Y J, et al. Uniform corrosion of FeCrAl alloys in LWR coolant environments[J]. Journal of Nuclear Materials, 2016(479): 36-47.
    [13]
    HORITA T, YAMAJI K, YOKOKAWA H, et al. Effects of Si and Al concentrations in Fe–Cr alloy on the formation of oxide scales in H2-H2O[J]. International Journal of Hydrogen Energy, 2008(33): 6308-6315.
    [14]
    RAM D L, TATLOCK G J, FALKE U. Segregation of reactive elements at oxide grainboundaries in FeCrAlRE alloys[J]. Materials at High Temperatures, 2005, 22(3-4): 497-503. doi: 10.1179/mht.2005.060
    [15]
    MOLINS R, GERMIDIS A, ANDRIEU E. Oxidation of thin FeCrAlstrips: kinetic and microstructural studies[J]. Microscopy of Oxidation-3, 1996(16-18): 3-11.
    [16]
    DRYEPONDT S, TURAN J, LEONARD D, et al. Long-term oxidation testing and lifetime modelingof cast and ODS FeCrAl alloys[J]. Oxidation of Metals, 2017, 87(1-2): 215-248. doi: 10.1007/s11085-016-9668-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (257) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return