Advance Search
Volume 42 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
Cai Long, Wang Weiguang, Lei Mingkai, Li Mengqi, Zhu Bao, Su Xianshun. Study on Wear Mechanism of Thrust Bearing of Nuclear Main Pump in Cooling Water Loss Condition[J]. Nuclear Power Engineering, 2021, 42(4): 214-221. doi: 10.13832/j.jnpe.2021.04.0214
Citation: Cai Long, Wang Weiguang, Lei Mingkai, Li Mengqi, Zhu Bao, Su Xianshun. Study on Wear Mechanism of Thrust Bearing of Nuclear Main Pump in Cooling Water Loss Condition[J]. Nuclear Power Engineering, 2021, 42(4): 214-221. doi: 10.13832/j.jnpe.2021.04.0214

Study on Wear Mechanism of Thrust Bearing of Nuclear Main Pump in Cooling Water Loss Condition

doi: 10.13832/j.jnpe.2021.04.0214
  • Received Date: 2020-06-23
  • Rev Recd Date: 2021-04-16
  • Available Online: 2021-08-09
  • Publish Date: 2021-08-15
  • When the nuclear main pump is in the cooling water loss condition of the nuclear power plant, its thrust bearing loses cold source heat transfer. The temperature of the lubricating medium of the thrust bearing will be continuously increased due to the temperature rise of the bearing, which is accompanied by more complicated thermal transient conditions. When the thickness of the lubricating liquid film of the thrust bearing is seriously reduced, the contact wear of the friction pair occurrs due to the insufficient thickness of the liquid film. A nuclear main pump is disassambled and checked after a water cut-off test, and the wear pattern of the water cut-off operating conditions through lubrication is analyzed. When the station blackout (SBO) inert shutdown is carried out in the water cut-off condition, with the increasing of wear depth, the oil film thickness of the bearing decreases to the extent that it cannot operate reliably, and the loss increases. With the oil film temperature exceeding the Babbitt alloy operating limit temperature of 110-120℃, serious wear of the bearing is prone to occur. It provides a theoretical support for optimizing the bearings and improving the wear resistance of multiple SBO inert shutdowns after wear.

     

  • loading
  • [1]
    焦峰,侯秦脉,车树伟. 核电厂丧失厂外电的经验反馈[J]. 中国核电,2013, 6(2): 186-189.
    [2]
    徐文吉,贾允,范业娇,等. 百万千瓦轴封式核主泵推力轴承失效研究[J]. 水泵技术,2020(1): 1-4, 7.
    [3]
    刘小军,陶邵佳,张亚宾,等. 核主泵轴承重载惰转停机承载性能研究[J]. 流体机械,2019, 47(10): 51-54, 88. doi: 10.3969/j.issn.1005-0329.2019.10.010
    [4]
    蔡龙. 核主泵推力轴承主瓦温差与装配关系研究[J]. 电站系统工程,2017, 33(4): 71-74.
    [5]
    仲维滨. 轴封式核主泵电机复合材料轴瓦结合特性研究[J]. 上海大中型电机,2019(2): 37-40.
    [6]
    蔡龙,王伟光. 核主泵无顶油惰转推力轴承磨损研究[J]. 水泵技术,2019(1): 10-13.
    [7]
    王伟光,李梦启,蔡龙,等. 核主泵推力轴承自润滑摩擦副研究[J]. 大电机技术,2019(3): 17-21, 25. doi: 10.3969/j.issn.1000-3983.2019.03.003
    [8]
    王伟光,蔡龙,李伟,等. 复合材料推力瓦在油润滑轴承中应用的研究进展[J]. 大电机技术,2019(2): 39-45. doi: 10.3969/j.issn.1000-3983.2019.02.009
    [9]
    张金慧,李伟,王伟光,等. 大推力水润滑轴承瓦面材料试验[J]. 防爆电机,2015, 50(6): 31-34. doi: 10.3969/J.ISSN.1008-7281.2015.06.10
    [10]
    SCHULZ T L. Westinghouse AP1000 advanced passive plant[J]. Nuclear Engineering and Design, 2006, 236(14-16): 1547-1557. doi: 10.1016/j.nucengdes.2006.03.049
    [11]
    ZHENG M G, YAN J Q, JUN S T, et al. The general design and technology innovations of CAP1400[J]. Engineering, 2016, 2(1): 97-102. doi: 10.1016/J.ENG.2016.01.018
    [12]
    荆春宁,赵科,张力友,等. “华龙一号”的设计理念与总体技术特征[J]. 中国核电,2017, 10(4): 463-467.
    [13]
    FILATOV V P, GRISHIN S G, PEDUNENKO P S, et al. Technical means of lower-level equipment of the hindukush-F in-reactor monitoring system for NPP with vver-1200[J]. Atomic Energy, 2018, 125(1): 23-27. doi: 10.1007/s10512-018-0436-z
    [14]
    艾书剑. EPR1750MW核电机组热经济性分析模型建立及应用[D]. 北京: 华北电力大学, 2017.
    [15]
    李梦启,王伟光,李藏雪,等. 核主泵水润滑推力轴承试验的磨损颗粒研究[J]. 润滑与密封,2016, 41(9): 113-120. doi: 10.3969/j.issn.0254-0150.2016.09.021
    [16]
    雷明凯. 核主泵制造的基础理论问题研究进展[J]. 中国核电,2018, 11(1): 51-58.
    [17]
    邓啸,邓礼平,黄伟,等. 水润滑推力轴承全流态润滑性能数值模拟分析[J]. 核动力工程,2015, 36(3): 94-98.
    [18]
    王大成,史庆峰,王苗苗,等. 汽轮机可倾瓦轴承低频振动诊断与处理[J]. 核动力工程,2016, 37(S1): 38-42.
    [19]
    王立来. AP1000主泵飞轮及水润滑轴承研究[J]. 核动力工程,2017, 38(1): 95-98.
    [20]
    邓啸,王岩,邓礼平,等. 核电主泵失电惰转时推力轴承动态特性分析[J]. 核动力工程,2017, 38(S2): 50-54.
    [21]
    沃斯克列辛斯基B A, 杰雅科夫B H. 滑动轴承计算和设计[M]. 陈金宝, 包传福, 译. 北京: 国防工业出版社, 1986: 208-209.
    [22]
    仲维滨,李藏雪,王伟光,等. 核电站海水循环水泵电机推力轴承研究[J]. 黑龙江大学工程学报,2017, 8(4): 83-89.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(6)

    Article Metrics

    Article views (410) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return