Advance Search
Volume 42 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
Guo Xing, Chen Qing, Wang Guangjin, Zhou Tian, Qiu Xinyuan, Zhou Yuan, Zhao Yuheng. Test Analysis of Insulation and Moisture Resistance of Insulation Support Plate of Electrical Penetration in Containment of Nuclear Power Plant[J]. Nuclear Power Engineering, 2021, 42(4): 233-238. doi: 10.13832/j.jnpe.2021.04.0233
Citation: Guo Xing, Chen Qing, Wang Guangjin, Zhou Tian, Qiu Xinyuan, Zhou Yuan, Zhao Yuheng. Test Analysis of Insulation and Moisture Resistance of Insulation Support Plate of Electrical Penetration in Containment of Nuclear Power Plant[J]. Nuclear Power Engineering, 2021, 42(4): 233-238. doi: 10.13832/j.jnpe.2021.04.0233

Test Analysis of Insulation and Moisture Resistance of Insulation Support Plate of Electrical Penetration in Containment of Nuclear Power Plant

doi: 10.13832/j.jnpe.2021.04.0233
  • Received Date: 2020-02-20
  • Rev Recd Date: 2020-06-22
  • Publish Date: 2021-08-15
  • The variation trend with temperature and relative humidity of water absorption, dielectric loss, relative permittivity, insulation resistance, volume resistivity, surface resistivity, and dielectric strength of polysulfone are measured. Polysulfone used as the insulating support plate on the medium voltage electrical penetration is designed and produced by Nuclear Power Institute of China (NPIC). The result shows that the relative humidity of environment has a significant effect on the water absorption of polysulfone. When the ambient temperature is 23℃ and the relative humidity increases from 30% to 98%, the corresponding water absorption increases from 0.012% to 0.106%, with a growth rate of 783.3%. The insulation resistance decreases gradually with the increasing of ambient temperature and relative humidity, with a maximum decreasing of 99.82%. However, the interphase insulation resistance of the insulation support plate of the electrical penetration is always greater than 200 TΩ. At the same time, the insulation resistance is greatly affected by its surface resistivity. The variation trend of insulation resistance and surface resistivity with ambient temperature and relative humidity is very close. The relative permittivity and dielectric strength are little affected by the ambient temperature and humidity. The insulation support plate of the medium voltage electrical penetration designed and produced by NPIC is with excellent moisture resistance and electrical insulation performance, and can work stably and reliably in high voltage, high temperature and high humidity environment.

     

  • loading
  • [1]
    王胜,向文元,赵月扬. 1E级电气贯穿件设备鉴定[J]. 机电信息,2011(24): 239-240.
    [2]
    俞高伟,马涛,孙健,等. 核电站严重事故下电气贯穿件鉴定的研究[J]. 电工电气,2019(6): 62-66.
    [3]
    李银,张广来. AP1000电气贯穿件安装工艺[J]. 中国新技术新产品,2014(11): 126-126.
    [4]
    俞高伟,胡子婴,吴珂科,等. 标准研究AP1000中压电气贯穿件合格鉴定电气试验要求[J]. 发电设备,2013, 27(2): 142-144. doi: 10.3969/j.issn.1671-086X.2013.02.020
    [5]
    陈鑫. EPR核电站核岛电气贯穿件介绍及安装[J]. 机电信息,2016(18): 63-64. doi: 10.3969/j.issn.1671-0797.2016.18.033
    [6]
    刘刚,黄冬艳,方文治,等. 核电厂安全壳电气贯穿件泄漏率计算分析[J]. 发电设备,2018, 32(1): 32-34. doi: 10.3969/j.issn.1671-086X.2018.01.008
    [7]
    郑开云. 核电厂中压电气贯穿件短路电动力试验探讨[C]//中国电机工程学会核能发电分会学术交流会. 北京, 2017.
    [8]
    朱幼君. 核电站电气贯穿件的应力评定及试验验证[J]. 发电设备,2019, 33(2): 103-107. doi: 10.3969/j.issn.1671-086X.2019.02.007
    [9]
    于金旭,李亚明,杨延安,等. 电气贯穿件用聚砜绝缘射频同轴电缆的研制[J]. 光纤与电缆及其应用技术,2017(3): 15-17.
    [10]
    杨文彬,张凯,杨序平,等. BN/聚砜导热绝缘复合材料的制备及性能[J]. 西南科技大学学报,2011(01): 27-30.
    [11]
    李明,张凯,杨文彬,等. h-BN/SiCw/聚砜导热绝缘复合材料的协同导热效应[J]. 高分子材料科学与工程,2015, 031(4): 73-77.
    [12]
    李明,杨文彬,张凯,等. 复合成型对聚砜复合材料导热绝缘性能的影响[J]. 高分子材料科学与工程,2015, 031(3): 153-157.
    [13]
    李珺鹏,齐暑华,曹鹏,等. 不同粒径氮化硼填充环氧树脂/玻璃纤维绝缘导热复合材料的研究[J]. 中国塑料,2011(6): 44-47.
    [14]
    中国国家标准化管理委员会. 塑料吸水性的测定: GB/T 1034—2008[S]. 北京: 中国标准出版社, 2008: 3-6.
    [15]
    中国国家标准化管理委员会. 测定固体绝缘材料绝缘电阻的试验方法: GB/T 10064—2006[S]. 北京: 中国标准出版社, 2006: 2-4.
    [16]
    中国国家标准化管理委员会. 测量电气绝缘材料在工频、音频、高频(包括米波波长在内)下电容率和介质损耗因数的推荐方法: GB/T 1409—2006[S]. 北京: 中国标准出版社, 2006: 7-8.
    [17]
    中国国家标准化管理委员会. 固体绝缘材料在试验前和试验时采用的标准条件: GB/T 10580—2015[S]. 北京: 中国标准出版社, 2015: 2-6.
    [18]
    中国国家标准化管理委员会. 绝缘材料电气强度试验方法 第1部分: 工频下试验: GB/T 1408.1—2016[S]. 北京: 中国标准出版社, 2016: 2-12.
    [19]
    MA B, ANDERSSON J, GUBANSKI S M. Evaluating resistance of polymeric materials for outdoor applications to corona and ozone[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2010, 17(2): 555-565.
    [20]
    MONTANARI G C. The electrical degradation threshold of polyethylene investigated by space charge and conduction current measurements[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2000, 7(3): 309-315. doi: 10.1109/94.848905
    [21]
    中国国家标准化管理委员会. 电气绝缘用树脂基活性复合物第1部分: 定义及一般要求: GB/T 15022.1—2009[S]. 北京: 中国标准出版社, 2008: 1-7.
    [22]
    中国国家标准化管理委员会. 电气绝缘用树脂基活性复合物 第2部分: 试验方法: GB/T 15022.2—2007[S]. 北京: 中国标准出版社, 2008: 3-6.
    [23]
    中国国家标准化管理委员会. 核电厂安全壳电气贯穿件: GB/T 13538—2017[S]. 北京: 中国质检出版社, 2017: 10-11.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (296) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return