Advance Search
Volume 42 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
Zhang Hongliang, Zhu Mingdong, Sun Xiaoyang, He Daming, Wang Qingtian, Su Dongchuan, Li Ning, Zeng Chang, He Xikou. Research on Fundamental Characteristics of Nuclear Grade 316H Stainless Steel at Ultra High Temperature[J]. Nuclear Power Engineering, 2021, 42(4): 270-276. doi: 10.13832/j.jnpe.2021.04.0270
Citation: Zhang Hongliang, Zhu Mingdong, Sun Xiaoyang, He Daming, Wang Qingtian, Su Dongchuan, Li Ning, Zeng Chang, He Xikou. Research on Fundamental Characteristics of Nuclear Grade 316H Stainless Steel at Ultra High Temperature[J]. Nuclear Power Engineering, 2021, 42(4): 270-276. doi: 10.13832/j.jnpe.2021.04.0270

Research on Fundamental Characteristics of Nuclear Grade 316H Stainless Steel at Ultra High Temperature

doi: 10.13832/j.jnpe.2021.04.0270
  • Received Date: 2021-04-06
  • Rev Recd Date: 2021-04-15
  • Publish Date: 2021-08-15
  • A fundamental feature of the fourth-generation-reactor is that most of the designed operating temperature are between 500℃ to 800℃, while the traditional material system and data of the PWR are below 350℃, which cannot meet the requirements. In this paper, 316H is selected as the research object through demonstration and analysis, which is suitable for most reactors and closest to engineering application. The experimental study on mechanical properties, specific heat capacity, average linear expansion coefficient, intergranular corrosion characteristics and low cycle fatigue at 800℃ was carried out. the result shows that the measured data are significantly higher than the standard values. It is recommented that the temperature limit for the long-term operation shall not exceed 700℃, and the temperature limit for the short-term operation shall not exceed 800℃. This study provides a basis for the selection and evaluation of the structural materials of the fourth-generation-reactor.

     

  • loading
  • [1]
    李长香,莫锦涛,段春辉. 316不锈钢长时总体一次薄膜应力强度许用值预测方法研究[J]. 核动力工程,2020, 41(5): 49-52.
    [2]
    谭晓惠,马建中,刘宇杰,等. 316不锈钢蠕变-疲劳交互作用试验研究[J]. 核动力工程,2013, 34(1): 140-145. doi: 10.3969/j.issn.0258-0926.2013.01.029
    [3]
    ZHAO L L, WEI S T, WU D, et al. δ-ferrite transformation mechanism and its effect on mechanical properties of 316H weld metal[J]. Journal of Materials Science and Technology, 2020(57): 33-42.
    [4]
    武宜梁,缪宏,滕增,等. 316H奥氏体不锈钢焊接接头裂纹失效分析[J]. 化工装备技术,2016, 37(2): 40-42+46.
    [5]
    MEHMANPARAST A, DAVIES C M, DEAN D W, et al. Material pre-conditioning effects on the creep behaviour of 316H stainless steel[J]. International Journal of Pressure Vessels and Piping, 2013(108-109): 88-93.
    [6]
    MEHMANPARAST A. Prediction of creep crack growth behaviour in 316H stainless steel for a range of specimen geometries[J]. International Journal of Pressure Vessels and Piping, 2014(120-121): 55-65.
    [7]
    MEHMANPARAST A, DAVIES C M, DEAN D W. Effects of plastic pre-straining level on the creep deformation, crack initiation and growth behaviour of 316H stainless steel[J]. International Journal of Pressure Vessels and Piping, 2016(141): 1-10.
    [8]
    DEAN D W, ALLPORT L. Difficulties in interpreting data from creep crack growth tests on type 316H weldments[J]. Materials Research Innovations, 2013, 17(5): 344-349. doi: 10.1179/1432891713Z.000000000254
    [9]
    HARES E A, MOSTAFAVI M, BRADFORD R. The effect of creep strain rate on damage accumulation in Type 316H austenitic stainless steel[J]. International Journal of Pressure Vessels and Piping, 2018(168): 132-141.
    [10]
    姜恒,江慧丰,范志超,等. 保载应力和加载速率对316H不锈钢蠕变行为的影响[J]. 压力容器,2011, 28(8): 6-10. doi: 10.3969/j.issn.1001-4837.2011.08.002
    [11]
    张博俊,余华金,荆洪阳,等. 核级316H 管道熔敷金属蠕变性能表征[J]. 焊接学报,2019, 40(12): 97-102.
    [12]
    AFCEN. Design and construction rules for mechanical components of PWR nuclear islands: RCC-M 2007[S]. France: AFCEN, 2007.
    [13]
    ASME. ASME boiler and pressure vessel code[S]. USA: ASME, 2007.
    [14]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料 拉伸试验 第2部分: 高温试验方法: GB/T 228.2—2015[S]. 北京: 中国标准出版社, 2015.
    [15]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料 弹性模量和泊松比试验方法: GB/T 22315—2008[S]. 北京: 中国标准出版社, 2008.
    [16]
    国家技术监督局. 贵金属及其合金熔化温度范围的测定 热分析试验方法: GB/T 1425—1996[S]. 北京: 中国标准出版社, 1997.
    [17]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料热膨胀特征参数的测定: GB/T 4339—2008[S]. 北京: 中国标准出版社, 2009.
    [18]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属和合金的腐蚀 不锈钢晶间腐蚀试验方法: GB/T 4334—2008[S]. 北京: 中国标准出版社, 2009.
    [19]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料轴向等幅低循环疲劳试验方法: GB/T 15248—2008[S]. 北京: 中国标准出版社, 2008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (971) PDF downloads(134) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return