Advance Search
Volume 42 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
Wang Weishu, Huang Zhihao, Xu Weihui, Ma Ziqiang, Zhu Xiaojing, Bi Qincheng. Experiemental Study on Heat Transfer of Supercritical Water in Triangular Channel of Reactor Core with Spacer Grid[J]. Nuclear Power Engineering, 2021, 42(5): 90-95. doi: 10.13832/j.jnpe.2021.05.0090
Citation: Wang Weishu, Huang Zhihao, Xu Weihui, Ma Ziqiang, Zhu Xiaojing, Bi Qincheng. Experiemental Study on Heat Transfer of Supercritical Water in Triangular Channel of Reactor Core with Spacer Grid[J]. Nuclear Power Engineering, 2021, 42(5): 90-95. doi: 10.13832/j.jnpe.2021.05.0090

Experiemental Study on Heat Transfer of Supercritical Water in Triangular Channel of Reactor Core with Spacer Grid

doi: 10.13832/j.jnpe.2021.05.0090
  • Received Date: 2020-07-08
  • Rev Recd Date: 2021-03-20
  • Publish Date: 2021-09-30
  • The experimental study on supercritical water flow heat transfer is carried out for the vertical upward triangular sub-channels in the supercritical water cooled reactor core with spacer grid. The fuel bundle diameter and pitch ratio of this sub-channel used are 8 mm and 1.4 respectively. The parameters adopted in the research include heat flux (q) ranging from 600 kW/m2, pressure (P) ranging from 23-28 MPa, and mass flow rate (G) ranging from 700-1,300 kg/(m2·s). This study analyzes the effect of such thermal parameters as heat flux, pressure and mass flow rate on the heat transfer characteristics of supercritical water. According to the experimental results, with the mass flow rate at the spacer grid increasing, the fluid disturbance increases and the heat transfer coefficient rises significantly; under the supercritical pressure, the inner surface temperature increases with the increasing pressure, and consequently, the peak heat transfer coefficient decreases; as the peak heat transfer coefficient reduces at an excessively high heat flux, the heat transfer performance can be improved when the heat flux is reduced properly; increasing the mass flow rate causes the drop of inner surface temperature and the increase of peak heat transfer coefficient, and thus can significantly improve the heat transfer performance; and the pressure change has little effect on the heat transfer characteristics in the vicinity of spacer grid, and however, the system safety can be improved by increasing the pressure properly.

     

  • loading
  • [1]
    XU J L, SUN E H, LI M J, et al. Key issues and solution strategies for supercritical carbon dioxide coal fired power plant[J]. Energy, 2018, 157(8): 227-246.
    [2]
    YAMAGATA K, NISHIKAWA K, HASEGAWA S, et al. Forced convection heat transfer to supercritical water flowing in tubes[J]. International Journal of Heat and Mass Transfer, 1972, 15(72): 2575-2593.
    [3]
    SHITSMANM M E. Impairment of the heat transmission at supercritical pressures[J]. High Temperature, 1963, 1(2): 237-244.
    [4]
    WANG W S, BI Q C, GU H F, et al. An investigation on heat transfer to water flowing in vertical upward internally ribbed enhancement tube at supercritical pressure[J]. Advanced Science Letters, 2011, 4(6-7): 2281-2288.
    [5]
    PIORO I L, KHARTABILL H F, DUFFEY R B. Heat transfer to supercritical fluids flowing in channels-empirical correlations(survey)[J]. Nuclear Engineering and Design, 2004, 230(1-3): 69-91. doi: 10.1016/j.nucengdes.2003.10.010
    [6]
    WANG J G, Li H X, GUO B, et al. Investigation of forced convection heat transfer of supercritical pressure water in a vertically upward internally ribbed tube[J]. Nuclear Engineering and Design, 2009, 239(10): 1956-1964. doi: 10.1016/j.nucengdes.2009.04.012
    [7]
    ZHU B G, XU J L, WU X M, et al. Supercritical “boiling” number, a new parameter to distinguish two regimes of carbon dioxide heat transfer in tubes[J]. International Journal of Thermal Sciences, 2019, 139(8): 254-266.
    [8]
    JIANG P X, LE Z, Xu R N. Experimental study of convective heat transfer of carbon dioxide at supercritical pressures in a horizontal rock fracture and its application to enhanced geothermal systems[J]. Applied Thermal Engineering, 2017, 117: 39-49. doi: 10.1016/j.applthermaleng.2017.01.078
    [9]
    CHENG X, KUANG B, YANG Y H. Numerical analysis of heat transfer in supercritical water cooled flow channels[J]. Nuclear Engineering and Design, 2007, 237(3): 240-252. doi: 10.1016/j.nucengdes.2006.06.011
    [10]
    ZHU X J, MOROOKA S, OKA Y. Numerical investigation of grid spacer effect on heat transfer of supercritical water flows in a tight rod bundle[J]. International Journal of Thermal Sciences, 2014, 76(2): 245-257.
    [11]
    YANG X B, SU G H, TIAN W X, et al. Numerical study on flow and heat transfer characteristics in the rod bundle channels under super critical pressure condition[J]. Annals of Nuclear Energy, 2010, 37(12): 1723-1734. doi: 10.1016/j.anucene.2010.07.008
    [12]
    ZHU X J, MOROOKA S, OKA Y. Numercial investigation of grid spacer effect on heat transfer of supercritical water flows in a tight rod bundle[J]. International Journal of Thermal Sciences, 2014, 76(76): 245-257.
    [13]
    李永亮,曾小康,黄志刚,等. 简单通道内超临界水传热特性实验研究[J]. 核动力工程,2013, 34(1): 101-107. doi: 10.3969/j.issn.0258-0926.2013.01.022
    [14]
    WU G, BI Q C, YANG Z D, et al. Experimental investigation of heat transfer for supercritical pressure water flowing in vertical annular channels[J]. Nuclear Engineering and Design, 2011, 241(9): 4045-4054. doi: 10.1016/j.nucengdes.2011.07.007
    [15]
    YANG Z D, BI Q C, WANG H, et al. Experiment of heat transfer to supercritical water flowing in vertical annular channels[J]. Heat Transfer, 2013, 135(4): 676-709.
    [16]
    王为术,路统,赵鹏飞,等. 超临界水冷堆类四边形子通道内超临界水的传热试验研究[J]. 中国电机工程学报,2014, 34(20): 3356-3361.
    [17]
    赵鹏飞. 反应堆类四边形子通道内超临界水流动传热特性研究[D]. 郑州: 华北水利水电大学, 2014.
    [18]
    路统. 超临界水冷堆类三角形子通道内超临界水传热的试验研究[D]. 郑州: 华北水利水电大学. 2015.
    [19]
    李虹波,赵萌,顾汉洋,等. 棒束内超临界水传热实验研究[J]. 原子能科学技术,2015, 49(11): 2017-2023. doi: 10.7538/yzk.2015.49.10.2017
    [20]
    何斯琪,顾汉洋,李虹波,等. 带格架四棒束超临界水流动传热数值分析[J]. 原子能科学技术,2014, 48(2): 257-262. doi: 10.7538/yzk.2014.48.02.0257
    [21]
    WANG H, BI Q C, YANG Z D, et al. Experimental and numerical study on the enhanced effect of spiral spacer to heat transfer of supercritical pressure water in vertical annular channels[J]. Applied Thermal Engineering, 2012, 48(15): 436-445.
    [22]
    干富军,刘达,顾汉洋,等. 棒束通道中格架对传热影响的实验研究[J]. 原子能科学技术,2019, 53(04): 648-653.
    [23]
    许多挺. 环管内超临界水流动传热实验研究及数值计算[D]. 上海: 上海交通大学, 2014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (152) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return