Advance Search
Volume 42 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
Zheng Wei, Li Haoxiang, Yin Huaqiang, He Xuedong, Wang Qiuhao, Ma Tao. Study on Chemical Kinetics of Carbon Migration in Superalloys in the Non-Pure Helium Environment in High Temperature Gas Cooled Reactors[J]. Nuclear Power Engineering, 2021, 42(5): 226-231. doi: 10.13832/j.jnpe.2021.05.0226
Citation: Zheng Wei, Li Haoxiang, Yin Huaqiang, He Xuedong, Wang Qiuhao, Ma Tao. Study on Chemical Kinetics of Carbon Migration in Superalloys in the Non-Pure Helium Environment in High Temperature Gas Cooled Reactors[J]. Nuclear Power Engineering, 2021, 42(5): 226-231. doi: 10.13832/j.jnpe.2021.05.0226

Study on Chemical Kinetics of Carbon Migration in Superalloys in the Non-Pure Helium Environment in High Temperature Gas Cooled Reactors

doi: 10.13832/j.jnpe.2021.05.0226
  • Received Date: 2020-08-26
  • Rev Recd Date: 2021-02-26
  • Publish Date: 2021-09-30
  • The primary coolant in the high temperature gas cooled reactor (HTGR) contains impurities of low content, which will cause serious corrosion of the superalloys in the HTGR operating at the ultra-high temperature. In particular, the carbon migration between the superalloys and non-pure helium has a great influence on the material performance. This study explores the chemical kinetics principle of the carbon migration in the non-pure helium environment, from which the theoretical criteria for material decarburization and carburization are gained. Also, according to the chemical thermodynamics and kinetics principles, this study calculates the oxygen partial pressure and carbon activity in the non-pure helium environment, and indicates that a high partial pressure ratio of CH4 to H2O may lead to serious carburization of the alloys. On this basis, this study presents a widely used carbon migration model, “chromium stable phase diagram”, analyzes the chromium activity calculation method, and summarizes the recommended values. Finally, the corrosion behavior of the 10 MW HTGR (HTR-10) designed by Tsinghua University under the actual operating conditions is obtained by calculation based on the chromium stable phase diagram.

     

  • loading
  • [1]
    SIMON R. The primary circuit of the dragon high temperature reactor experiment[C]//Proceedings of the 18th International Conference on Structural Mechanics in Reactor Technology. Beijing, 2005.
    [2]
    ZIERMANN E. Review of 21 years of power operation at the AVR experimental nuclear power station in Jülich[J]. Nuclear Engineering and Design, 1990, 121(2): 135-142. doi: 10.1016/0029-5493(90)90098-I
    [3]
    QUADAKKERS W J. High temperature corrosion in the service environments of a nuclear process heat plant[J]. Materials Science and Engineering, 1987, 87: 107-112. doi: 10.1016/0025-5416(87)90366-1
    [4]
    FUJIKAWA S, HAYASHI H, NAKAZAWA T, et al. Achievement of reactor-outlet coolant temperature of 950℃ in HTTR[J]. Journal of Nuclear Science and Technology, 2004, 41(12): 1245-1254. doi: 10.1080/18811248.2004.9726354
    [5]
    SAKABA N, NAKAGAWA S, FURUSAWA T, et al. Coolant chemistry of the high temperature gas-cooled reactor ‘HTTR’[J]. Transactions of the Atomic Energy Society of Japan, 2004, 3(4): 388-395. doi: 10.3327/taesj2002.3.388
    [6]
    LUO X W, YU X L, YU S Y. Oxidation performance of graphite material in reactors[J]. Frontiers of Energy and Power Engineering in China, 2008, 2(4): 471-474. doi: 10.1007/s11708-008-0074-6
    [7]
    YU X L, YU S Y. Analysis of fuel element matrix graphite corrosion in HTR-PM for normal operating conditions[J]. Nuclear Engineering and Design, 2010, 240(4): 738-743. doi: 10.1016/j.nucengdes.2009.12.015
    [8]
    QUADAKKERS W J, SCHUSTER H. Thermodynamic and kinetic aspects of the corrosion of high-temperature alloys in high-temperature gas-cooled reactor helium[J]. Nuclear Technology, 1984, 66(2): 383-391. doi: 10.13182/NT84-A33441
    [9]
    QUADAKKERS W J, SCHUSTER H. Corrosion of high temperature alloys in the primary circuit helium of high temperature gas cooled reactors. -Part I: theoretical background[J]. Materials and Corrosion, 1985, 36(4): 141-150. doi: 10.1002/maco.19850360402
    [10]
    石霖. 合金热力学[M]. 北京: 机械工业出版社, 1992: 539-540.
    [11]
    池成忠,贺志勇,高原,等. 表面渗铬T8钢中碳迁移的热力学分析[J]. 中国表面工程,2004, 17(4): 38-41. doi: 10.3321/j.issn:1007-9289.2004.04.010
    [12]
    QUADAKKERS W J. Corrosion of high temperature alloys in the primary circuit helium of high temperature gas cooled reactors. Part II: Experimental Results[J]. Materials and Corrosion, 1985, 36(8): 335-347. doi: 10.1002/maco.19850360802
    [13]
    KURATA Y, OGAWA Y, NAKAJIMA H. Effect of carburizing helium environment on creep-behavior of Ni-base heat-resistant alloys for high-temperature gas-cooled reactors[J]. Journal of the Iron and Steel Institute of Japan, 1988, 74(11): 2185-2192. doi: 10.2355/tetsutohagane1955.74.11_2185
    [14]
    KURATA Y, OGAWA Y, NAKAJIMA H. Effect of decarburizing helium environment on creep behavior of Ni-base heat-resistant alloys for high-temperature gas-cooled reactors[J]. Journal of the Iron and Steel Institute of Japan, 1988, 74(2): 380-387. doi: 10.2355/tetsutohagane1955.74.2_380
    [15]
    HAMAMOTO S, SAKABA N, TAKEDA Y. Control method of purification system of helium coolant for suppressing decarburization of heat-resistant alloy used in very high temperature gas cooling reactors[J]. Transactions of the Atomic Energy Society of Japan, 2010, 9(2): 174-182. doi: 10.3327/taesj.J08.058
    [16]
    GOSSÉ S, ALPETTAZ T, CHATAIN S, et al. Chromium activity measurements in nickel based alloys for very high temperature reactors: Inconel 617, Haynes 230, and Model alloys[J]. Journal of Engineering for Gas Turbines and Power, 2009, 131(6): 062901. doi: 10.1115/1.3094017
    [17]
    HILPERT K, ALI-KHAN I. Mass spectrometric studies of alloys proposed for high-temperature reactor systems: I. Alloy in-643[J]. Journal of Nuclear Materials, 1978, 78(2): 265-271. doi: 10.1016/0022-3115(78)90447-6
    [18]
    HILPERT K, GERADS H, LUPTON D F. Mass spectrometric studies of alloys proposed for high temperature reactor systems: II. Inconel alloy 617 and Nimonic alloy PE 13[J]. Journal of Nuclear Materials, 1979, 80(1): 126-131. doi: 10.1016/0022-3115(79)90228-9
    [19]
    GOSSÉ S, ALPETTAZ T, ROUILLARD F, et al. Direct measurements of the chromium activity in complex nickel base alloys by high temperature mass spectrometry[J]. Materials Science Forum, 2008, 595-598: 975-985. doi: 10.4028/www.scientific.net/MSF.595-598.975
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (249) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return