Advance Search
Volume 42 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Deng Shengwen, Zhu Enping, Zhao Pengcheng, Zhai Pengdi, Liu Zijing, Yu Qingyuan. Analysis of Disturbance Resisting Ability of Dual-Loop Natural Circulation System under Asymmetrical Conditions[J]. Nuclear Power Engineering, 2021, 42(6): 44-49. doi: 10.13832/j.jnpe.2021.06.0044
Citation: Deng Shengwen, Zhu Enping, Zhao Pengcheng, Zhai Pengdi, Liu Zijing, Yu Qingyuan. Analysis of Disturbance Resisting Ability of Dual-Loop Natural Circulation System under Asymmetrical Conditions[J]. Nuclear Power Engineering, 2021, 42(6): 44-49. doi: 10.13832/j.jnpe.2021.06.0044

Analysis of Disturbance Resisting Ability of Dual-Loop Natural Circulation System under Asymmetrical Conditions

doi: 10.13832/j.jnpe.2021.06.0044
  • Received Date: 2020-09-29
  • Rev Recd Date: 2021-06-04
  • Publish Date: 2021-12-09
  • Natural circulation lead-cooled fast reactor heat exchangers operate under the harsh environment of high temperature, high pressure difference, high density and high corrosion, which can easily induce heat transfer tube rupture and blockage accidents, resulting in asymmetric thermal load or asymmetric resistance operation of the reactor. It has an important impact on the safe and stable operation of the reactor. This paper takes the lead-cooled dual-loop natural circulation system as the research object, and uses a non-dimensional analysis method to derive the theoretical solution of the natural circulation flow of the dual-loop system; then carries out the disturbance characteristics analysis of the natural circulation system under different thermal load differences or resistance differences, using the fitting approximation method to establish the natural circulation characteristic parameters that characterize the anti-disturbance ability, and get the best anti-disturbance interval. The research results show that when the system introduces some thermal load and resistance disturbance, the loop flow does not change greatly, and the system has strong anti-disturbance ability.

     

  • loading
  • [1]
    LORUSSO P, BASSINI S, DEL NEVO A, et al. GEN-IV LFR development: status & perspectives[J]. Progress in Nuclear Energy, 2018(105): 318-331. doi: 10.1016/j.pnucene.2018.02.005
    [2]
    WU Y C. Design and R& D progress of China lead-based reactor for ADS research facility[J]. Engineering, 2016, 2(1): 124-131. doi: 10.1016/J.ENG.2016.01.023
    [3]
    ZHANG Y, WANG C L, LAN Z K, et al. Review of thermal-hydraulic issues and studies of lead-based fast reactors[J]. Renewable and Sustainable Energy Reviews, 2020(120): 109625. doi: 10.1016/j.rser.2019.109625
    [4]
    魏诗颖,王成龙,田文喜,等. 铅基快堆关键热工水力问题研究综述[J]. 原子能科学技术,2019, 53(2): 326-336. doi: 10.7538/yzk.2018.youxian.0335
    [5]
    ROELOFS F. Liquid metal thermal hydraulics: state-of-the-art and future perspectives[J]. Nuclear Engineering and Design, 2020(362): 110590. doi: 10.1016/j.nucengdes.2020.110590
    [6]
    孔松,于雷,郝建立,等. 一体化反应堆扰动条件下自然循环特性研究[J]. 核动力工程,2018, 39(4): 53-57.
    [7]
    VISSER D C, KEIJERS S, LOPES S, et al. CFD analyses of the European scaled pool experiment E-SCAPE[J]. Nuclear Engineering and Design, 2020(358): 110436. doi: 10.1016/j.nucengdes.2019.110436
    [8]
    TARANTINO M, ROELOFS F, SHAMS A, et al. SESAME project: advancements in liquid metal thermal hydraulics experiments and simulations[J]. EPJ Nuclear Sciences & Technologies, 2020(6): 18.
    [9]
    MOREAU V, PROFIR M, ALEMBERTI A, et al. Pool CFD modelling: lessons from the SESAME project[J]. Nuclear Engineering and Design, 2019(355): 110343. doi: 10.1016/j.nucengdes.2019.110343
    [10]
    VAN TICHELEN K, KENNEDY G, MIRELLI F, et al. Advanced liquid-metal thermal-hydraulic research for MYRRHA[J]. Nuclear Technology, 2020, 206(2): 150-163.
    [11]
    BORTOT S, SUVDANTSETSEG E, WALLENIUS J. BELLA: a multi-point dynamics code for safety-informed design of fast reactors[J]. Annals of Nuclear Energy, 2015(85): 228-235.
    [12]
    KRÓLIKOWSKI I P, CETNAR J. Neutronic and thermal-hydraulic coupling for 3D reactor core modeling combining MCB and fluent[J]. Nukleonika, 2015, 60(3): 531-536. doi: 10.1515/nuka-2015-0097
    [13]
    JELTSOV M. Validation and application of CFD to safety-related phenomena in lead-cooled fast reactors[D]. Stockholm, Sweden: Royal Institute of Technology, 2018.
    [14]
    LIU X J, YANG D M, YANG Y, et al. Computational fluid dynamics and subchannel analysis of lead–bismuth eutectic-cooled fuel assembly under various blockage conditions[J]. Applied Thermal Engineering, 2020(164): 114419. doi: 10.1016/j.applthermaleng.2019.114419
    [15]
    HAMMAN K D, BERRY R A. A CFD simulation process for fast reactor fuel assemblies[J]. Nuclear Engineering and Design, 2010, 240(9): 2304-2312. doi: 10.1016/j.nucengdes.2009.11.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (257) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return