Advance Search
Volume 42 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Guo Tingshan, Liang Zhiyuan, Gui Yong, Zhao Qinxin. Corrosion Behavior Study of Fe-22Cr-25Ni Austenitic Heat-Resistant Steel under Supercritical CO2 Condition[J]. Nuclear Power Engineering, 2021, 42(6): 93-99. doi: 10.13832/j.jnpe.2021.06.0093
Citation: Guo Tingshan, Liang Zhiyuan, Gui Yong, Zhao Qinxin. Corrosion Behavior Study of Fe-22Cr-25Ni Austenitic Heat-Resistant Steel under Supercritical CO2 Condition[J]. Nuclear Power Engineering, 2021, 42(6): 93-99. doi: 10.13832/j.jnpe.2021.06.0093

Corrosion Behavior Study of Fe-22Cr-25Ni Austenitic Heat-Resistant Steel under Supercritical CO2 Condition

doi: 10.13832/j.jnpe.2021.06.0093
  • Received Date: 2020-10-09
  • Rev Recd Date: 2021-04-01
  • Publish Date: 2021-12-09
  • The high temperature corrosion behavior of austenitic heat-resistant steel Fe-22Cr-25Ni under 600℃/700℃ and 15 MPa supercritical CO2 condition was investigated. The composition, content and element distribution of corrosion products were characterized by Raman spectroscopy, Glow Discharge Spectroscopy, SEM and EDS. The results show that the corrosion kinetics of Fe-22Cr-25Ni at 600℃/700℃ follow the parabola-like law, and the change of corrosion mass gain increases with increasing temperature. By observing the characterization results and thermodynamic calculations, it is concluded that the corrosion product composition is mainly Cr2O3, specifically, from the gas side to the substrate side are the outermost Mn oxide, the internal Cr2O3 and Mn-Cr oxide, the SiO2 layer at the oxide layer / substrate interface, and the carbide and internal oxide in the substrate; C is mainly deposited on the surface of corrosion products, the width and depth of the Cr-depleted zone increase with increasing time. At the same time, according to the mass ratio of O and C and the results of thermodynamic calculation, it is suggested that C is very likely to be diffused in ionic state.

     

  • loading
  • [1]
    MAHAFFEY J, SCHROEDER A, ADAM D, et al. Effects of CO and O2 impurities on supercritical CO2 corrosion of alloy 625[J]. Metallurgical and Materials Transactions A, 2018, 49(8): 3703-3714. doi: 10.1007/s11661-018-4727-8
    [2]
    HOLCOMB G R, CARNEY C, DOĞAN ÖN. Oxidation of alloys for energy applications in supercritical CO2 and H2O[J]. Corrosion Science, 2016(109): 22-35. doi: 10.1016/j.corsci.2016.03.018
    [3]
    鲁金涛,赵新宝,袁勇,等. 超临界二氧化碳布雷顿循环系统中材料的腐蚀行为[J]. 中国电机工程学报,2016, 36(3): 739-745.
    [4]
    梁志远,桂雍,赵钦新. 超临界二氧化碳动力系统耐热材料高温腐蚀研究进展[J]. 装备环境工程,2020, 17(7): 88-93.
    [5]
    OLEKSAK R P, ROUILLARD F. Materials performance in CO2 and supercritical CO2[J]. Comprehensive Nuclear Materials, 2020(4): 422-451.
    [6]
    NYGREN K E, YU Z, ROUILLARD F, et al. Effect of sample thickness on the oxidation and carburization kinetics of 9Cr-1Mo steel in high and atmospheric pressure CO2 at 550℃[J]. Corrosion Science, 2020(163): 108292.1-108292.12.
    [7]
    KIM S H, CHA J H, JANG C. Corrosion and creep behavior of a Ni-base alloy in supercritical-carbon dioxide environment at 650℃[J]. Corrosion Science, 2020(174): 108843.
    [8]
    BRITTAN A, MAHAFFEY J, ANDERSON M. Corrosion and mechanical performance of grade 92 ferritic-martensitic steel after exposure to supercritical carbon dioxide[J]. Metallurgical and Materials Transactions A, 2020, 51(5): 2564-2572. doi: 10.1007/s11661-020-05691-7
    [9]
    刘晓强,梅林波,帅师. 超临界二氧化碳中材料的腐蚀行为[J]. 热力透平,2020, 49(2): 143-147+168.
    [10]
    FIROUZDOR V, SRIDHARAN K, CAO G, et al. Corrosion of a stainless steel and nickel-based alloys in high temperature supercritical carbon dioxide environment[J]. Corrosion Science, 2013(69): 281-291. doi: 10.1016/j.corsci.2012.11.041
    [11]
    TAN L, ANDERSON M, TAYLOR D, et al. Corrosion of austenitic and ferritic-martensitic steels exposed to supercritical carbon dioxide[J]. Corrosion Science, 2011, 53(10): 3273-3280. doi: 10.1016/j.corsci.2011.06.002
    [12]
    CAO G, FIROUZDOR V, SRIDHARAN K, et al. Corrosion of austenitic alloys in high temperature supercritical carbon dioxide[J]. Corrosion Science, 2012(60): 246-255. doi: 10.1016/j.corsci.2012.03.029
    [13]
    ROUILLARD F, FURUKAWA T. Corrosion of 9-12Cr ferritic-martensitic steels in high-temperature CO2[J]. Corrosion Science, 2016(105): 120-132. doi: 10.1016/j.corsci.2016.01.009
    [14]
    LEE H J, KIM H, KIM S H, et al. Corrosion and carburization behavior of chromia-forming heat resistant alloys in a high-temperature supercritical-carbon dioxide environment[J]. Corrosion Science, 2015(99): 227-239. doi: 10.1016/j.corsci.2015.07.007
    [15]
    沈朝. 超临界水冷堆燃料包壳候选材料的腐蚀行为研究[D]. 上海: 上海交通大学, 2015: 38-41.
    [16]
    梁志远,桂雍,赵钦新. 超临界二氧化碳条件下3种典型耐热钢腐蚀特性实验研究[J]. 西安交通大学学报,2019, 53(7): 23-29.
    [17]
    SUBRAMANIAN G O, LEE H J, KIM S H, et al. Corrosion and carburization behaviour of ni-xcr binary alloys in a high-temperature supercritical-carbon dioxide environment[J]. Oxidation of Metals, 2017, 89(5-6): 683-697.
    [18]
    MAHAFFEY J, ADAM D, BRITTAN A, et al. Corrosion of alloy haynes 230 in high temperature supercritical carbon dioxide with oxygen impurity additions[J]. Oxidation of Metals, 2016, 86(5-6): 567-580. doi: 10.1007/s11085-016-9654-8
    [19]
    刘珠,郭相龙,王鹏,等. 310S不锈钢在超临界二氧化碳中的腐蚀行为研究[J]. 核动力工程,2020, 41(S1): 183-187.
    [20]
    FIROUZDOR V, CAO G P, SRIDHARAN K, et al. Corrosion resistance of PM2000 ODS steel in high temperature supercritical carbon dioxide[J]. Materials and Corrosion, 2015, 66(2): 137-142. doi: 10.1002/maco.201307223
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (268) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return