Advance Search
Volume 42 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Zhu Linglin, Tang Qionghui, Chen Liutong. Research on Influence of Air Gap and Contact Thermal Resistance on Thermal Safety of Container for Spent Fuel Dry Transfer[J]. Nuclear Power Engineering, 2021, 42(6): 230-236. doi: 10.13832/j.jnpe.2021.06.0230
Citation: Zhu Linglin, Tang Qionghui, Chen Liutong. Research on Influence of Air Gap and Contact Thermal Resistance on Thermal Safety of Container for Spent Fuel Dry Transfer[J]. Nuclear Power Engineering, 2021, 42(6): 230-236. doi: 10.13832/j.jnpe.2021.06.0230

Research on Influence of Air Gap and Contact Thermal Resistance on Thermal Safety of Container for Spent Fuel Dry Transfer

doi: 10.13832/j.jnpe.2021.06.0230
  • Received Date: 2020-09-10
  • Rev Recd Date: 2020-10-28
  • Publish Date: 2021-12-09
  • The gap between the structural shell and the lead layer is one of the important paths for the transfer container to discharge decay heat, and the heat transfer between the two is affected by the contact thermal resistance. Based on the thermal safety assessment of the transfer container, the air gap with different thickness is set for the contact thermal resistance between the lead layer and the structural shell produced during the lead filling process, and the transient numerical simulation during horizontal transfer is carried out by using FLUENT software. The results show the contact thermal resistance generated by the air gap layer between the lead layer and the structural shell causes a significant temperature difference between the two. The temperature difference increases with the thickness of the air layer. Excessive temperature difference can easily cause the lead layer to overheat and lose the shielding safety function; In the design and manufacturing process of the transfer container, the optimization of the lead filling process shall aim to reduce the gap thickness between the lead layer and the structural shell, and enhance the fit degree between the two layers, so as to improve the thermal safety performance of the transfer container.

     

  • loading
  • [1]
    洪哲,赵善桂,杨晓伟,等. 乏燃料干式贮存技术比较分析[J]. 核安全,2016, 15(4): 75-81.
    [2]
    袁呈煜, 刘彦章, 莫怀森. 压水堆乏燃料干法贮存技术应用研究[J]. 核科学与工程,2017, 37(3): 370-376.
    [3]
    HERRANZ L E, PENALVA J, FERIA F. CFD analysis of a cask for spent fuel dry storage: Model fundamentals and sensitivity studies[J]. Annals of Nuclear Energy, 2015, 76(2): 54-62.
    [4]
    KO F K, LIANG T K S, YANG C Y. Development of Thermal Analysis Capability of Dry Storage Cask for Spend Fuel Interim Storage[J]. American Society of Mechanical Engineers, 2002(463): 471.
    [5]
    FRANO R L, PUGLIESE G, FORASASSI G. Thermal analysis of a spent fuel cask in different transport conditions[J]. Energy, 2011, 36(4): 2285-2293. doi: 10.1016/j.energy.2010.01.041
    [6]
    BENAVIDES J, JIMENEZ G, LLORET M, et al. Methodology for thermal analysis of spent nuclear fuel dry cask using CFD codes[J]. Annals of Nuclear Energy, 2019, 133(9): 257-274.
    [7]
    HUO J J, ZHENG Y S, YAO L, et al. Analysis of standards and supervision requirement of dry storage for spent fuel[J]. Nuclear Safety, 2019, 18(5): 13-18.
    [8]
    陆金琪, 向乏燃料贮存容器中灌铅的外冷式灌铅系统和方法: 中国, CN107633890A[P]. 2018-01-26.
    [9]
    赵黎. 双层屋面空气层隔热性能计算分析[D]. 杭州: 浙江大学建筑工程学院, 2008.
    [10]
    葛新石, 叶宏. 传热和传质基本原理[M]. 北京: 化学工业出版社, 2009: 62-63.
    [11]
    王崇翔, 侯伟. 关于对核电厂内乏燃料干法贮存系统核安全监管要求的研究[J]. 核安全,2016, 15(52): 14-19.
    [12]
    豆瑞锋, 温治, 苏福永. 考虑辐射影响的接触传热模型与分析[J]. 工程科学学报,2009, 31(10): 1328-1333.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views (293) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return