Advance Search
Volume 42 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Pang Hua, Li Yipeng, Lyv Liangliang, Zhang Xiang, Zhao Yanli, Zhang Jibin, Peng Hang, Zhang Hongzhi, Sun Zhipeng, Chen Jie. Study on the Evolution of Dislocation Loop under Zirconium Alloy In-Situ Ion Irradiation[J]. Nuclear Power Engineering, 2021, 42(6): 248-253. doi: 10.13832/j.jnpe.2021.06.0248
Citation: Pang Hua, Li Yipeng, Lyv Liangliang, Zhang Xiang, Zhao Yanli, Zhang Jibin, Peng Hang, Zhang Hongzhi, Sun Zhipeng, Chen Jie. Study on the Evolution of Dislocation Loop under Zirconium Alloy In-Situ Ion Irradiation[J]. Nuclear Power Engineering, 2021, 42(6): 248-253. doi: 10.13832/j.jnpe.2021.06.0248

Study on the Evolution of Dislocation Loop under Zirconium Alloy In-Situ Ion Irradiation

doi: 10.13832/j.jnpe.2021.06.0248
  • Received Date: 2021-07-12
  • Rev Recd Date: 2021-08-18
  • Publish Date: 2021-12-09
  • Dislocation loop evolution is one of the major features of the microstructure evolution of nuclear-grade zirconium alloy exposed to irradiation, which determines the mechanical properties (strength, plasticity, etc.) of the alloy after irradiation. To date, experimental researches on the irradiation dislocation loop evolution of zirconium alloy are mainly based on ex-situ neutron or ion irradiation, without a direct observation of the dislocation loop evolution process. To obtain an in-depth understanding of microstructure evolution of zirconium alloy under irradiation, the present work utilizes the advanced in-situ ion irradiation technique for a real-time observation of Zr-2 alloy dislocation loop evolution. As a result, the rule of irradiation dose and temperature dependence of the evolution process has been revealed, and the irradiation hardening effect has been evaluated by applying the dispersed barrier hardening model, the feasibility and advancement of the in-situ ion irradiation technique on studying dislocation loop evolution and mechanical property evaluation of zirconium alloy cladding materials after irradiation is demonstrated.

     

  • loading
  • [1]
    刘建章. 核结构材料[M]. 北京: 化学工业出版社, 2007: 5-6.
    [2]
    弗罗斯特B R T. 核材料(第II部分)[M]. 周邦新 译. 北京: 科学出版社, 1999: 6-7.
    [3]
    GRIFFITHS M. A review of microstructure evolution in zirconium alloys during irradiation[J]. Journal of Nuclear Materials, 1988(159): 190-218. doi: 10.1016/0022-3115(88)90093-1
    [4]
    NORTHWOOD D O, GILBERT R W, BAHEN L E, et al. Characterization of neutron irradiation damage in zirconium alloys-an international “round-robin” experiment[J]. Journal of Nuclear Materials, 1979, 79(2): 379-394. doi: 10.1016/0022-3115(79)90103-X
    [5]
    JOSTSONS A, KELLY P M, BLAKE R G, et al. Neutron irradiation-induced defect structures in zirconium[J]. Effects of Radiation on Structural Materials, 1979(683): 46-61.
    [6]
    HELLIO C, DE NOVION C H, BOULANGER L. Influence of alloying elements on the dislocation loops created by Zr+ ion or by electron irradiation in α-zirconium[J]. Journal of Nuclear Materials, 1988(159): 368-378. doi: 10.1016/0022-3115(88)90103-1
    [7]
    GAUMÉ M, ONIMUS F, DUPUY L, et al. Microstructure evolution of recrystallized zircaloy-4 under charged particles irradiation[J]. Journal of Nuclear Materials, 2017(495): 516-528. doi: 10.1016/j.jnucmat.2017.09.004
    [8]
    TOURNADRE L, ONIMUS F, BÉCHADE J, et al. Zirconium in the nuclear industry[C]//West Conshohocken, PA: ASTM International, 2014.
    [9]
    GHARBI N, ONIMUS F, GILBON D, et al. Impact of an applied stress on c-component loops under Zr ion irradiation in recrystallized zircaloy-4 and M5®[J]. Journal of Nuclear Materials, 2015(467): 785-801. doi: 10.1016/j.jnucmat.2015.10.009
    [10]
    HOLT R A, GILBERT R W. <c> Component dislocations in annealed Zircaloy irradiated at about 570 K[J]. Journal of Nuclear Materials, 1986, 137(3): 185-189. doi: 10.1016/0022-3115(86)90218-7
    [11]
    TOURNADRE L, ONIMUS F, BÉCHADE J L, et al. Experimental study of the nucleation and growth of c-component loops under charged particle irradiations of recrystallized zircaloy-4[J]. Journal of Nuclear Materials, 2012, 425(1-3): 76-82. doi: 10.1016/j.jnucmat.2011.11.061
    [12]
    GRIFFITHS M, LORETTO M H, SMALLMAN R E. Electron damage in zirconium: I. Defect structure and loop character[J]. Journal of Nuclear Materials, 1983, 115(2-3): 313-322. doi: 10.1016/0022-3115(83)90322-7
    [13]
    YAMADA S, KAMEYAMA T. Observation of c-component dislocation structures formed in pure Zr and Zr-base alloy by self-ion accelerator irradiation[J]. Journal of Nuclear Materials, 2012, 422(1-3): 167-172. doi: 10.1016/j.jnucmat.2011.12.035
    [14]
    MAKIN M J, SHARP J V. A model of “lattice” hardening in irradiated copper crystals with the external characteristics of “source” hardening[J]. Physica Status Solidi B, 1965, 9(1): 109-118. doi: 10.1002/pssb.19650090114
    [15]
    CHAI L J, LUAN B F, XIAO D P, et al. Microstructural and textural evolution of commercially pure Zr sheet rolled at room and liquid nitrogen temperatures[J]. Materials & Design, 2015(85): 296-308.
    [16]
    BUSBY J T, HASH M C, WAS G S. The relationship between hardness and yield stress in irradiated austenitic and ferritic steels[J]. Journal of Nuclear Materials, 2005, 336(2-3): 267-278. doi: 10.1016/j.jnucmat.2004.09.024
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (450) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return