Citation: | Guo Zixuan, Jian Xiaobin, Li Wenjie, Zhang Kun, Wang Peng, Wang Yanpei. Research on In-Pile Thermo-Mechanical Performance for U-10Mo/Zr Monolithic Fuel Element under Steady Condition[J]. Nuclear Power Engineering, 2021, 42(6): 254-260. doi: 10.13832/j.jnpe.2021.06.0254 |
[1] |
CRAWFORD D C, HAYES S L, POWERS J J. VTR startup fuel paper for NFSM: INL/EXT-18-44673-Rev000[R]. Idaho: Idaho National Laboratory, 2018.
|
[2] |
DRAGUNOV Y G, TRETIYAKOV I T, LOPATKIN A V, et al. MBIR multipurpose fast reactor – Innovative tool for the development of nuclear power technologies[J]. Atomic Energy, 2012, 113(1): 24-28. doi: 10.1007/s10512-012-9590-x
|
[3] |
KIM Y S, HOFMAN G L, CHEON J S, et al. Fission induced swelling and creep of U-Mo alloy fuel[J]. Journal of Nuclear Materials, 2013, 437(1-3): 37-46. doi: 10.1016/j.jnucmat.2013.01.346
|
[4] |
SHOUDY A A, MCHUGH W E, SILLIMAN M A. The effect of irradiation temperature and fission rate on the radiation stability of uranium-10 wt% molybdenum alloy[C]//Proceedings of Radiation Damage in Reactor Materials. Vienna: IAEA, 1963.
|
[5] |
LÓPEZ M, PICCHETTI B, TABOADA H. Influence of temperature and compressive stress on the UMo/Zry-4 interdiffusion layer[J]. Progress in Nuclear Energy, 2017(94): 101-105. doi: 10.1016/j.pnucene.2016.10.006
|
[6] |
MILLER G K, BURKES D E, WACHS D M. Modeling thermal and stress behavior of the fuel-clad interface in monolithic fuel mini-plates[J]. Materials & Design, 2010, 31(7): 3234-3243.
|
[7] |
YUN D, HOFMAN G L, KIM Y S, et al. Finite element modeling of irradiation induced swelling and creep in metallic mini-plate fuel - A preliminary study[J]. Transactions of the American Nuclear Society, 2011(105): 407-408.
|
[8] |
ZHAO Y M, GONG X, DING S R. Simulation of the irradiation-induced thermo-mechanical behaviors evolution in monolithic U-Mo/Zr fuel plates under a heterogeneous irradiation condition[J]. Nuclear Engineering and Design, 2015(285): 85-97.
|
[9] |
殷明阳,庞华,唐昌兵,等. UMo-Zr单片式燃料板结构改进研究[J]. 核动力工程,2019, 40(4): 172-176.
|
[10] |
孔祥喆,丁淑蓉,田旭. UMo/Zr单片式燃料板堆内热力耦合行为研究[J]. 核动力工程,2018, 39(2): 109-113.
|
[11] |
CUI Y, DING S R, CHEN Z T, et al. Modifications and applications of the mechanistic gaseous swelling model for UMo fuel[J]. Journal of Nuclear Materials, 2015(457): 157-164. doi: 10.1016/j.jnucmat.2014.11.065
|
[12] |
WILLARD R M, SCHMITT A R. Irradiation swelling, phase reversion, and intergranular cracking of U-10wt. % Mo fuel alloy: NAA-SR-8956[R]. California: Atomics International, 1964.
|
[13] |
BLEIBERG M L. Effect of fission rate and lamella spacing upon the irradiation-induced phase transformation of U-9wt% Mo alloy[J]. Journal of Nuclear Materials, 1959, 1(2): 182-190. doi: 10.1016/0022-3115(59)90051-0
|
[14] |
KIM Y S, HOFMAN G L. Fission product induced swelling of U-Mo alloy fuel[J]. Journal of Nuclear Materials, 2011, 419(1-3): 291-301. doi: 10.1016/j.jnucmat.2011.08.018
|
[15] |
YAN F, JIAN X B, DING S R. Effects of UMo irradiation creep on the thermo-mechanical behavior in monolithic UMo/Al fuel plates[J]. Journal of Nuclear Materials, 2019(524): 209-217. doi: 10.1016/j.jnucmat.2019.07.006
|
[16] |
FISHER F E, RENKEN J C. Single-crystal elastic moduli and the Hcp→bcc transformation in Ti, Zr, and Hf[J]. Physical Review A, 1964, 135(2A): A482-A494. doi: 10.1103/PhysRev.135.A482
|
[17] |
HAGRMAN D L, REYMAN G A. MATPRO-Version 11: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior: NUREG/CR-0497[R]. Idaho: Idaho National Engineering Laboratory, 1979.
|
[18] |
HALES J D, WILLIAMSON R L, NOVASCONE S R, et al. BISON theory manual the equations behind nuclear fuel analysis: INL/EXT-13-29930[R]. Idaho: Idaho National Laboratory, 2016.
|
[19] |
JAEGER W. Heat transfer to liquid metals with empirical models for turbulent forced convection in various geometries[J]. Nuclear Engineering and Design, 2017(319): 12-27. doi: 10.1016/j.nucengdes.2017.04.028
|
[20] |
REST J, KIM Y S, HOFMAN G L, et al. U-Mo Fuels Handbook: ANL-09/31[R]. Argonne: Argonne National Laboratory, 2006.
|