Advance Search
Volume 43 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Song Jian, Yu Hongxing, Deng Jian, Xiang Qing'an, He Xiaoqiang. Marginal Research on IVR Capability of Alumina Nanofluid Enhanced Spherical Lower Head[J]. Nuclear Power Engineering, 2022, 43(1): 156-162. doi: 10.13832/j.jnpe.2022.01.0156
Citation: Song Jian, Yu Hongxing, Deng Jian, Xiang Qing'an, He Xiaoqiang. Marginal Research on IVR Capability of Alumina Nanofluid Enhanced Spherical Lower Head[J]. Nuclear Power Engineering, 2022, 43(1): 156-162. doi: 10.13832/j.jnpe.2022.01.0156

Marginal Research on IVR Capability of Alumina Nanofluid Enhanced Spherical Lower Head

doi: 10.13832/j.jnpe.2022.01.0156
  • Received Date: 2020-12-22
  • Rev Recd Date: 2021-04-28
  • Publish Date: 2022-02-01
  • In order to evaluate the extent to which alumina nanofluids can extend the IVR capability of the spherical lower head relative to pure water working medium, in this paper, the critical heat flux (CHF) mechanism model of alumina nanofluid based on bubble force balance and the wall heat flux partitioning CHF model are used to calculate the CHF of nanofluid on the outer surface of spherical lower head. The decay heat distribution sampling calculation is carried out by using the IVR analysis software CISER, and the random distribution of CHF on the wall of the lower head with the inclination angle is obtained. Compared with the theoretical value of the nanofluid CHF model, the influence of nanofluid on the marginal expansion of IVR capability is studied and judged by taking the CHF ratio less than 1 as the IVR success criterion. The results show that if no optimization measures are taken for the internal and external heat transfer composition of the lower head and only nanofluid is used to replace pure water working medium, the IVR capability margin of PWR nuclear power plant can be expanded to 1300 MW rated power level.

     

  • loading
  • [1]
    CILOGLU D, BOLUKBASI A. A comprehensive review on pool boiling of nanofluids[J]. Applied Thermal Engineering, 2015, 84: 45-63. doi: 10.1016/j.applthermaleng.2015.03.063
    [2]
    KIM H D, KIM J, KIM M H. Experimental studies on CHF characteristics of nano-fluids at pool boiling[J]. International Journal of Multiphase Flow, 2007, 33(7): 691-706. doi: 10.1016/j.ijmultiphaseflow.2007.02.007
    [3]
    何晓强,余红星,江光明. 氧化铝纳米流体临界热流密度机理模型研究−物理模型[J]. 核动力工程,2018, 39(3): 162-165.
    [4]
    REMPE J L, KNUDSON D L, ALLISON C M, et al. Potential for AP600 in-vessel retention through ex-vessel flooding[R]. Washington: USDOE Assistant Secretary for Nuclear Energy, 1997.
    [5]
    何晓强,余红星,王金雨,等. 氧化铝纳米流体临界热流密度机理模型验证[J]. 核动力工程,2019, 40(2): 6-9.
    [6]
    HAM J, CHO H. Theoretical analysis of pool boiling characteristics of Al2O3 nanofluid according to volume concentration and nanoparticle size[J]. Applied Thermal Engineering, 2016, 108: 158-171. doi: 10.1016/j.applthermaleng.2016.07.058
    [7]
    袁杨,李祥东,屠基元. 纳米流体沸腾模型中某些物理参数的理论探讨[J]. 清华大学学报:自然科学版,2015, 55(7): 815-820.
    [8]
    PHAM Q T, KIM T I, LEE S S, et al. Enhancement of critical heat flux using nano-fluids for invessel retention-external vessel cooling[J]. Applied Thermal Engineering, 2012, 35: 157-165. doi: 10.1016/j.applthermaleng.2011.10.017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (237) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return