Citation: | Liu Dong, Luo Qi, Tang Lei, An Ping, Yang Fan. Solving Multi-Dimensional Neutron Diffusion Equation Using Deep Machine Learning Technology Based on PINN Model[J]. Nuclear Power Engineering, 2022, 43(2): 1-8. doi: 10.13832/j.jnpe.2022.02.0001 |
[1] |
谢仲生, 曹良志, 张少泓. 核反应堆物理分析[M]. 第五版. 西安: 西安交通大学出版社, 2020: 69-90.
|
[2] |
曹良志, 谢仲生, 李云召. 近代核反应堆物理分析[M]. 北京: 中国原子能出版社, 2017: 8-209.
|
[3] |
周蜀林. 偏微分方程[M]. 北京: 北京大学出版社, 2005: 1-16.
|
[4] |
张强. 偏微分方程的有限差分方法[M]. 北京: 科学出版社, 2017: 77-114.
|
[5] |
李治平. 偏微分方程数值解讲义[M]. 北京: 北京大学出版社, 2010: 202-282.
|
[6] |
GALIB S M, BHOWMIK P K, AVACHAT A V, et al. A comparative study of machine learning methods for automated identification of radioisotopes using NaI gamma-ray spectra[J]. Nuclear Engineering and Technology, 2021, 53(12): 4072-4079. doi: 10.1016/j.net.2021.06.020
|
[7] |
VAN MILLIGEN B P, TRIBALDOS V, JIMÉNEZ J A. Neural network differential equation and plasma equilibrium solver[J]. Physical Review Letters, 1995, 75(20): 3594-3597. doi: 10.1103/PhysRevLett.75.3594
|
[8] |
MAI-DUY N, TRAN-CONG T. Numerical solution of differential equations using multiquadric radial basis function networks[J]. Neural Networks, 2001, 14(2): 185-199. doi: 10.1016/S0893-6080(00)00095-2
|
[9] |
MAI-DUY N, TANNER R I. Solving high-order partial differential equations with indirect radial basis function networks[J]. International Journal for Numerical Methods in Engineering, 2005, 63(11): 1636-1654. doi: 10.1002/nme.1332
|
[10] |
MALL S, CHAKRAVERTY S. Single layer chebyshev neural network model for solving elliptic partial differential equations[J]. Neural Processing Letters, 2017, 45(3): 825-840. doi: 10.1007/s11063-016-9551-9
|
[11] |
XIE Y C, WANG Y H, MA Y, et al. Neural network based deep learning method for multi-dimensional neutron diffusion problems with novel treatment to boundary[J]. Journal of Nuclear Engineering, 2021, 2(4): 533-552. doi: 10.3390/jne2040036
|
[12] |
RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045
|
[13] |
刘宪高. 变分法与偏微分方程[M]. 北京: 科学出版社, 2016: 45-122.
|
[14] |
HAGAN M T, DEMUTH H B, BEALE M H, et al. Neural network design[M]. ZHANG Y, trans. 2nd ed. Beijing: China Machine Press, 2018: 1-25.
|
[15] |
杨强, 张宇, 戴文渊, 等. 迁移学习[M]. 庄福振, 译. 北京: 机械工业出版社, 2020: 2-79.
|