Advance Search
Volume 43 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
Liu Dong, Luo Qi, Tang Lei, An Ping, Yang Fan. Solving Multi-Dimensional Neutron Diffusion Equation Using Deep Machine Learning Technology Based on PINN Model[J]. Nuclear Power Engineering, 2022, 43(2): 1-8. doi: 10.13832/j.jnpe.2022.02.0001
Citation: Liu Dong, Luo Qi, Tang Lei, An Ping, Yang Fan. Solving Multi-Dimensional Neutron Diffusion Equation Using Deep Machine Learning Technology Based on PINN Model[J]. Nuclear Power Engineering, 2022, 43(2): 1-8. doi: 10.13832/j.jnpe.2022.02.0001

Solving Multi-Dimensional Neutron Diffusion Equation Using Deep Machine Learning Technology Based on PINN Model

doi: 10.13832/j.jnpe.2022.02.0001
  • Received Date: 2021-12-07
  • Accepted Date: 2022-02-14
  • Rev Recd Date: 2022-01-26
  • Publish Date: 2022-04-02
  • This paper elaborates the physics-informed neural network model (PINN), constructs a deep neural network as a trial function, substitutes it into the neutron diffusion equation to form a residual, and takes it as the weighted loss function of machine learning, and then approaches the numerical solution of the neutron diffusion equation by deep machine learning technique; According to the characteristics of diffusion equation, this paper puts forward innovative key technologies such as accelerated convergence method of eigenvalue equation, efficient parallel search technology of effective multiplication coefficient (keff), learning sample grid point uneven distribution strategy, and analyzes the sensitivity of key parameters such as neural network depth, neuron number, boundary condition loss function weight and so on. The verification calculation results show that the method has good accuracy, and the proposed key technology has remarkable results, and explores a new technical approach for the numerical solution of the neutron diffusion equation.

     

  • loading
  • [1]
    谢仲生, 曹良志, 张少泓. 核反应堆物理分析[M]. 第五版. 西安: 西安交通大学出版社, 2020: 69-90.
    [2]
    曹良志, 谢仲生, 李云召. 近代核反应堆物理分析[M]. 北京: 中国原子能出版社, 2017: 8-209.
    [3]
    周蜀林. 偏微分方程[M]. 北京: 北京大学出版社, 2005: 1-16.
    [4]
    张强. 偏微分方程的有限差分方法[M]. 北京: 科学出版社, 2017: 77-114.
    [5]
    李治平. 偏微分方程数值解讲义[M]. 北京: 北京大学出版社, 2010: 202-282.
    [6]
    GALIB S M, BHOWMIK P K, AVACHAT A V, et al. A comparative study of machine learning methods for automated identification of radioisotopes using NaI gamma-ray spectra[J]. Nuclear Engineering and Technology, 2021, 53(12): 4072-4079. doi: 10.1016/j.net.2021.06.020
    [7]
    VAN MILLIGEN B P, TRIBALDOS V, JIMÉNEZ J A. Neural network differential equation and plasma equilibrium solver[J]. Physical Review Letters, 1995, 75(20): 3594-3597. doi: 10.1103/PhysRevLett.75.3594
    [8]
    MAI-DUY N, TRAN-CONG T. Numerical solution of differential equations using multiquadric radial basis function networks[J]. Neural Networks, 2001, 14(2): 185-199. doi: 10.1016/S0893-6080(00)00095-2
    [9]
    MAI-DUY N, TANNER R I. Solving high-order partial differential equations with indirect radial basis function networks[J]. International Journal for Numerical Methods in Engineering, 2005, 63(11): 1636-1654. doi: 10.1002/nme.1332
    [10]
    MALL S, CHAKRAVERTY S. Single layer chebyshev neural network model for solving elliptic partial differential equations[J]. Neural Processing Letters, 2017, 45(3): 825-840. doi: 10.1007/s11063-016-9551-9
    [11]
    XIE Y C, WANG Y H, MA Y, et al. Neural network based deep learning method for multi-dimensional neutron diffusion problems with novel treatment to boundary[J]. Journal of Nuclear Engineering, 2021, 2(4): 533-552. doi: 10.3390/jne2040036
    [12]
    RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045
    [13]
    刘宪高. 变分法与偏微分方程[M]. 北京: 科学出版社, 2016: 45-122.
    [14]
    HAGAN M T, DEMUTH H B, BEALE M H, et al. Neural network design[M]. ZHANG Y, trans. 2nd ed. Beijing: China Machine Press, 2018: 1-25.
    [15]
    杨强, 张宇, 戴文渊, 等. 迁移学习[M]. 庄福振, 译. 北京: 机械工业出版社, 2020: 2-79.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(8)

    Article Metrics

    Article views (3458) PDF downloads(555) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return