Citation: | Zhang Sifan, Yuan Yuan, Liu Zhouyu, Zhou Xinyu, Cao Liangzhi. A Two-dimensional Coupled Neutron Transport Method for MOC and SN via Boundary Fluence Rate Coupling[J]. Nuclear Power Engineering, 2022, 43(2): 9-16. doi: 10.13832/j.jnpe.2022.02.0009 |
[1] |
LIU Z Y, WU H C, CAO L Z, et al. A new three-dimensional method of characteristics for the neutron transport calculation[J]. Annals of Nuclear Energy, 2011, 38(2-3): 447-454. doi: 10.1016/j.anucene.2010.09.021
|
[2] |
刘宙宇. 中子输运方程的三维模块化特征线计算方法研究[D]. 西安: 西安交通大学, 2014.
|
[3] |
COLLINS B, STIMPSON S, KELLEY B W, et al. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT[J]. Journal of Computational Physics, 2016, 326: 612-628. doi: 10.1016/j.jcp.2016.08.022
|
[4] |
LEE G S, CHO N Z. 2D/1D fusion method solutions of the three-dimensional transport OECD benchmark problem C5G7 MOX[J]. Progress in Nuclear Energy, 2006, 48(5): 410-423. doi: 10.1016/j.pnucene.2006.01.010
|
[5] |
LEE G S. Development of 2D/1D fusion method for three-dimensional whole-core heterogeneous neutron transport calculations[D]. Seoul: Korea Advanced Institute of Science & Technology, 2006.
|
[6] |
CHO J Y, KIM K S, LEE C C, et al. Axial SPN and radial MOC coupled whole core transport calculation[J]. Journal of Nuclear Science and Technology, 2007, 44(9): 1156-1171. doi: 10.1080/18811248.2007.9711359
|
[7] |
CHO N Z, LEE G S, PARK C J. Fusion of method of characteristics and nodal method for 3-D whole-core transport calculation[J]. Transactions of the American Nuclear Society, 2002, 86: 322-324.
|
[8] |
JOO H G, CHO J Y, KIM K S, et al. Methods and performance of a three-dimensional whole-core transport code DeCART[C]//Proceeding of PHYSOR 2004-The Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments. Chicago, Illinois: American Nuclear Society, 2004.
|
[9] |
JUNG Y S, SHIM C B, LIM C H, et al. Practical numerical reactor employing direct whole core neutron transport and subchannel thermal/hydraulic solvers[J]. Annals of Nuclear Energy, 2013, 62: 357-374. doi: 10.1016/j.anucene.2013.06.031
|
[10] |
CHEN J, LIU Z Y, ZHAO C, et al. A new high-fidelity neutronics code NECP-X[J]. Annals of Nuclear Energy, 2018, 116: 417-428. doi: 10.1016/j.anucene.2018.02.049
|
[11] |
LIU Z Y, LIANG L, CHEN J, et al. Accuracy and analysis of the iteratively coupling 2D/3D method for the three-dimensional transport calculations[J]. Annals of Nuclear Energy, 2018, 113: 130-138. doi: 10.1016/j.anucene.2017.10.020
|
[12] |
LIU S C, WANG G B, WU G C, et al. Neutronics comparative analysis of plate-type research reactor using deterministic and stochastic methods[J]. Annals of Nuclear Energy, 2015, 79: 133-142. doi: 10.1016/j.anucene.2015.01.027
|
[13] |
WALTERS W F, O'DELL R D. Nodal methods for discrete-ordinates transport problems in (X, Y) geometry[C]//Proceeding of the ANS/ENS Joint Topical Meeting, Mathematical Methods in Nuclear Engineering, Munich, FRG, 1981.
|
[14] |
WALTERS W F. Use of the Chebyshev-Legendre quadrature set in discrete-ordinate codes: LAUR-87-3621[R]. Los Alamos, USA: Los Alamos Scientific Laboratory, 1987.
|
[15] |
YAMAMOTO A, TABUCHI M, SUGIMURA N, et al. Derivation of optimum polar angle quadrature set for the method of characteristics based on approximation error for the bickley function[J]. Journal of Nuclear Science & Technology, 2007, 44(2): 129-136.
|
[16] |
SANCHEZ R, MAO L, SANTANDREA S. Treatment of boundary conditions in trajectory based deterministic transport methods[J]. Nuclear Science and Engineering, 2002, 140(1): 23-50. doi: 10.13182/NSE140-23
|
[17] |
LU H L, WU H C. A nodal SN transport method for three-dimensional triangular-z geometry[J]. Nuclear Engineering and Design, 2007, 237(8): 830-839. doi: 10.1016/j.nucengdes.2006.10.025
|
[18] |
BADRUZZAMAN A. An efficient algorithm for nodal-transport solutions in multidimensional geometry[J]. Nuclear Science and Engineering, 1985, 89(3): 281-290. doi: 10.13182/NSE85-A17550
|
[19] |
SMITH M A, LEWIS E E, NA B C. Benchmark on deterministic transport calculations without spatial homogenization: a 2-D/3-D MOX fuel assembly benchmark: ISBN 92-64-02139-6[R]. Paris: OECD/NEA, 2003
|