Advance Search
Volume 43 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
Lu Heng, Zhao Heng, Dai Ye, Chen Xingwei, Jia Guobin, Zou Yang. MSR Supercritical Carbon Dioxide Brayton Cycle System and Thermodynamic Analysis[J]. Nuclear Power Engineering, 2022, 43(2): 32-39. doi: 10.13832/j.jnpe.2022.02.0032
Citation: Lu Heng, Zhao Heng, Dai Ye, Chen Xingwei, Jia Guobin, Zou Yang. MSR Supercritical Carbon Dioxide Brayton Cycle System and Thermodynamic Analysis[J]. Nuclear Power Engineering, 2022, 43(2): 32-39. doi: 10.13832/j.jnpe.2022.02.0032

MSR Supercritical Carbon Dioxide Brayton Cycle System and Thermodynamic Analysis

doi: 10.13832/j.jnpe.2022.02.0032
  • Received Date: 2021-02-02
  • Accepted Date: 2021-02-02
  • Rev Recd Date: 2021-10-29
  • Publish Date: 2022-04-02
  • Molten salt reactor (MSR) can realize on-line packing and post-processing, and the outlet temperature is higher, so it shall be equipped with an innovative cycle mode that matches its outlet temperature, and can achieve higher cycle efficiency. In this paper, a supercritical carbon dioxide (SCO2) Brayton cycle system is designed based on the small modular molten salt reactor (smTMSR-400) designed by Shanghai Institute of Applied Physics, Chinese Academy of Sciences. The effects of split ratio, compressor/turbine efficiency, outlet temperature of main compressor and heat exchange temperature difference/resistance of low temperature heat exchanger on SCO2 Brayton cycle system are analyzed by using the control variable method. The analysis results show that: ①there is an optimal split ratio to make the temperature difference between the two sides of the low temperature heat exchanger equal; ②compared with the compressor efficiency, the equal-amplitude turbine efficiency improvement can make the system cycle efficiency and exergy efficiency higher; ③ the increase in the outlet pressure of the main compressor has a positive impact on the system, but the cycle efficiency/exergy efficiency and its slope gradually decrease; ④the heat exchange temperature difference and flow resistance of the heat exchanger bring quantifiable burden to the system cycle: for every 10 K increase in the heat exchange temperature difference, the cycle efficiency decreases by 1.85% and exergy efficiency decreases by 2.70%; When the flow resistance increases by 1 MPa, the cycle efficiency decreases by 6.58% and exergy efficiency decreases by 10.22%. At last ,this paper designs 5 physical reference schemes based on the analysis results and system exergy changes.

     

  • loading
  • [1]
    魏泉,郭威,王海玲,等. 熔盐堆物理热工耦合程序开发及验证分析[J]. 核技术,2017, 40(10): 100605.
    [2]
    缪洪康,陈玉爽,吕刘帅,等. 板翅式换热器新型翅片换热特性数值模拟研究[J]. 核技术,2018, 41(10): 100601.
    [3]
    黄潇立,王俊峰,臧金光. 超临界二氧化碳布雷顿循环热力学特性研究[J]. 核动力工程,2016, 37(3): 34-38.
    [4]
    FEHER E G. The supercritical thermodynamic power cycle[J]. Energy Conversion, 1968, 8(2): 85-90. doi: 10.1016/0013-7480(68)90105-8
    [5]
    ANGELINO G. Carbon dioxide condensation cycles for power production[J]. Journal of Engineering for Gas Turbines and Power, 1968, 90(3): 287-295.
    [6]
    LADISLAV V, VACLAV D, ONDREJ B, et al. Pinch point analysis of heat exchangers for supercritical carbon dioxide with gaseous admixtures in CCS systems[J]. Energy Procedia, 2016, 86: 489-499. doi: 10.1016/j.egypro.2016.01.050
    [7]
    DOSTAL V, HEJZLAR P, TODREAS N, et al. Medium-power lead-alloy fast reactor balance-of-plant options[J]. Nuclear Technology, 2004, 147(3): 388-405. doi: 10.13182/NT147-388
    [8]
    DOSTAL V, HEJZLAR P, DRISCOLL M J. High-performance supercritical carbon dioxide cycle for next-generation nuclear reactors[J]. Nuclear Technology, 2006, 154(3): 265-282. doi: 10.13182/NT154-265
    [9]
    DOSTAL V, HEJZLAR P, DRISCOLL M J. The supercritical carbon dioxide power cycle: comparison to other advanced power cycles[J]. Nuclear Technology, 2006, 154(3): 283-301. doi: 10.13182/NT06-A3734
    [10]
    SARKAR J, BHATTACHARYYA S. Optimization of recompression S-CO2 power cycle with reheating[J]. Energy Conversion and Management, 2009, 50(8): 1939-1945. doi: 10.1016/j.enconman.2009.04.015
    [11]
    刘生晖,黄彦平,刘光旭,等. 不同状态方程对超临界二氧化碳强迫对流传热中流动加速因子的影响[J]. 核动力工程,2019, 40(1): 18-22.
    [12]
    赵新宝,鲁金涛,袁勇,等. 超临界二氧化碳布雷顿循环在发电机组中的应用和关键热端部件选材分析[J]. 中国电机工程学报,2016, 36(1): 154-162.
    [13]
    邹春燕, 余呈刚, 朱贵凤, 等. 利用超铀核素启动的小型模块化钍基熔盐堆中子学性能研究[J]. 核技术, 2020, 43(12): 120601.
    [14]
    杨映麟, 张尧立, 赵英汝, 等. 超临界二氧化碳再压缩布雷顿循环变工况特性分析[J]. 原子能科学技术, 2018, 52(9): 1625-1634
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (856) PDF downloads(98) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return