Advance Search
Volume 43 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
Yu Qingyuan, Zhao Pengcheng, Ma Yugao. CFD Analysis on Characteristics of High Temperature Heat Pipe[J]. Nuclear Power Engineering, 2022, 43(2): 70-76. doi: 10.13832/j.jnpe.2022.02.0070
Citation: Yu Qingyuan, Zhao Pengcheng, Ma Yugao. CFD Analysis on Characteristics of High Temperature Heat Pipe[J]. Nuclear Power Engineering, 2022, 43(2): 70-76. doi: 10.13832/j.jnpe.2022.02.0070

CFD Analysis on Characteristics of High Temperature Heat Pipe

doi: 10.13832/j.jnpe.2022.02.0070
  • Received Date: 2021-09-10
  • Accepted Date: 2022-01-10
  • Rev Recd Date: 2021-12-29
  • Publish Date: 2022-04-02
  • The analysis and prediction of the operating characteristics of high temperature heat pipe are of great significance to the design and application of heat pipe. In order to analyze the heat transfer characteristics of two-phase flow in high temperature heat pipe, first, the computational fluid dynamics (CFD) analysis model of sodium heat pipe is established, and the calculated values of the model are compared with the steady-state experimental data of sodium heat pipe. The absolute error between the simulation results and the temperature of the experimental measuring point is less than 40℃, and the relative error is within 5%; Second, the flow field characteristics of heat pipe under different heat transfer power and inclination angle are analyzed and studied by using the model and method in this paper. The results show that under the condition of uniform heating, the velocity in the steam chamber changes nearly linearly in the evaporation section, while in the condensation section, the decrease of gas velocity leads to the rise of pressure. At the same time, the flow pressure drop and velocity of steam decrease with the increase of heating power; Under the horizontal and inclined operating conditions of heat pipe, the liquid phase pressure drop is dominant in the two-phase flow pressure drop in heat pipe; in the gas-liquid shear effect, the gas flow velocity is the dominant effect. The model presented in this paper can provide heat pipe design and analysis methods for high temperature heat pipe applications such as heat pipe reactor.

     

  • loading
  • [1]
    FAGHRI A. Review and advances in heat pipe science and technology[J]. Journal of Heat Transfer, 2012, 134(12): 123001. doi: 10.1115/1.4007407
    [2]
    余红星,马誉高,张卓华,等. 热管冷却反应堆的兴起和发展[J]. 核动力工程,2019, 40(4): 1-8.
    [3]
    WANG C L, TANG S M, LIU X, et al. Experimental study on heat pipe thermoelectric generator for industrial high temperature waste heat recovery[J]. Applied Thermal Engineering, 2020, 175: 115299. doi: 10.1016/j.applthermaleng.2020.115299
    [4]
    CHAUDHRY H N, HUGHES B R, GHANI S A. A review of heat pipe systems for heat recovery and renewable energy applications[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 2249-2259. doi: 10.1016/j.rser.2012.01.038
    [5]
    马誉高,杨小燕,刘余,等. MW级热管冷却反应堆反馈特性及启堆过程研究[J]. 原子能科学技术,2021, 55(S2): 213-220.
    [6]
    马誉高,刘旻昀,余红星,等. 热管冷却反应堆核热力耦合研究[J]. 核动力工程,2020, 41(4): 191-196.
    [7]
    冯踏青. 液态金属高温热管的理论和试验研究[D]. 杭州: 浙江大学, 1998: 11.
    [8]
    李桂云,屠进. 高温热管工质的选择[J]. 节能技术,2001, 19(1): 42-44. doi: 10.3969/j.issn.1002-6339.2001.01.018
    [9]
    田智星,刘逍,王成龙,等. 高温钾热管稳态运行传热特性研究[J]. 原子能科学技术,2020, 54(10): 1771-1778.
    [10]
    MA Y G, YU H X, HUANG S F, et al. Effect of inclination angle on the startup of a frozen sodium heat pipe[J]. Applied Thermal Engineering, 2022, 201: 117625. doi: 10.1016/j.applthermaleng.2021.117625
    [11]
    CAO Y, FAGHRI A. A numerical analysis of high-temperature heat pipe startup from the frozen state[J]. Journal of Heat Transfer, 1993, 115(1): 247-254. doi: 10.1115/1.2910657
    [12]
    FERRANDI C, IORIZZO F, MAMELI M, et al. Lumped parameter model of sintered heat pipe: transient numerical analysis and validation[J]. Applied Thermal Engineering, 2013, 50(1): 1280-1290. doi: 10.1016/j.applthermaleng.2012.07.022
    [13]
    TIAN Z X, WANG C L, HUANG J L, et al. Code development and analysis on the operation of liquid metal high temperature heat pipes under full condition[J]. Annals of Nuclear Energy, 2021, 160: 108396. doi: 10.1016/j.anucene.2021.108396
    [14]
    ZUO Z J, FAGHRI A. A network thermodynamic analysis of the heat pipe[J]. International Journal of Heat and Mass Transfer, 1998, 41(11): 1473-1484. doi: 10.1016/S0017-9310(97)00220-2
    [15]
    BEAM J E. Transient heat pipe analysis[C]//Proceedings of the 20th Thermophysics Conference. Williamsburg: AIAA, 1985.
    [16]
    焦永刚,夏国栋,周明正,等. 基于“平面前锋”启动模型的计量用钠热管启动特性[J]. 化工学报,2012, 63(3): 781-787. doi: 10.3969/j.issn.0438-1157.2012.03.015
    [17]
    ALIZADEHDAKHEL A, RAHIMI M, ALSAIRAFI A A. CFD modeling of flow and heat transfer in a thermosyphon[J]. International Communications in Heat and Mass Transfer, 2010, 37(3): 312-318. doi: 10.1016/j.icheatmasstransfer.2009.09.002
    [18]
    ASMAIE L, HAGHSHENASFARD M, MEHRABANI-ZEINABAD A, et al. Thermal performance analysis of nanofluids in a thermosyphon heat pipe using CFD modeling[J]. Heat and Mass Transfer, 2013, 49(5): 667-678. doi: 10.1007/s00231-013-1110-6
    [19]
    SOLOMON A B, RAMACHANDRAN K, ASIRVATHAM L G, et al. Numerical analysis of a screen mesh wick heat pipe with Cu/water nanofluid[J]. International Journal of Heat and Mass Transfer, 2014, 75: 523-533. doi: 10.1016/j.ijheatmasstransfer.2014.04.007
    [20]
    FADHL B, WROBEL L C, JOUHARA H. CFD modelling of a two-phase closed thermosyphon charged with R134a and R404a[J]. Applied Thermal Engineering, 2015, 78: 482-490. doi: 10.1016/j.applthermaleng.2014.12.062
    [21]
    刘鹤青. 金属丝编织密纹网的孔隙率[J]. 过滤与分离,2007, 17(4): 26-27,33. doi: 10.3969/j.issn.1005-8265.2007.04.008
    [22]
    SUN H, TANG S M, WANG C L, et al. Numerical simulation of a small high-temperature heat pipe cooled reactor with CFD methodology[J]. Nuclear Engineering and Design, 2020, 370: 110907. doi: 10.1016/j.nucengdes.2020.110907
    [23]
    RANJAN R, MURTHY J Y, GARIMELLA S V, et al. A numerical model for transport in flat heat pipes considering wick microstructure effects[J]. International Journal of Heat and Mass Transfer, 2011, 54(1-3): 153-168. doi: 10.1016/j.ijheatmasstransfer.2010.09.057
    [24]
    庄骏, 张红. 热管技术及其工程应用[M]. 北京: 化学工业出版社, 2000: 65.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (930) PDF downloads(152) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return