Advance Search
Volume 43 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
Tang Jia, Yang Yu, Lin Mingzhang, Lu Yunyun, Xiong Wei, Guo Zifang, Wu Zhihao. Study on PUREX 1B Process Simulation Based on MPMS Calculation Model[J]. Nuclear Power Engineering, 2022, 43(2): 102-107. doi: 10.13832/j.jnpe.2022.02.0102
Citation: Tang Jia, Yang Yu, Lin Mingzhang, Lu Yunyun, Xiong Wei, Guo Zifang, Wu Zhihao. Study on PUREX 1B Process Simulation Based on MPMS Calculation Model[J]. Nuclear Power Engineering, 2022, 43(2): 102-107. doi: 10.13832/j.jnpe.2022.02.0102

Study on PUREX 1B Process Simulation Based on MPMS Calculation Model

doi: 10.13832/j.jnpe.2022.02.0102
  • Received Date: 2021-02-04
  • Rev Recd Date: 2021-03-02
  • Publish Date: 2022-04-02
  • In order to simulate the U/Pu separation (1B) process of uranium plutonium redox extraction (PUREX), a mathematical model of 1B process with NH3OH+-N2H4 (HAN-HYD) as reducing extractant was established based on the framework of MPMS calculation model, using multi-stage mixer-settler as extraction equipment, and based on the chemical reaction system and empirical extraction system. The validity of the model is verified by comparing with the literature data. The mathematical model is applied to explore the effect of a low flow rate and high acid cleaning solution in 1B process under specific parameters. The results show that the introduction of the low flow rate and high acid cleaning solution will reduce the recovery of U/Pu. In order to further evaluate the effect of low flow rate and high acid cleaning solution on the separation efficiency and recovery efficiency of 1B process under different conditions, different U/Pu separation effects were obtained by changing the process parameters of low flow rate and high acid cleaning solution in the model. The calculation results show that the optimal U/Pu separation efficiency can be obtained by 1B process without introducing low flow rate and high acid cleaning solution. The mathematical model will provide useful help for the process evaluation and prediction of 1B process based on multi-stage mixer-settler.

     

  • loading
  • [1]
    World Nuclear Association. World nuclear power reactors & uranium requirements[EB/OL]. (2020-11-09) [2021-01-14]. https://www.world-nuclear.org/information-library/facts-and-figures/world-nuclear-power-reactors-and-uranium-requireme.aspx.
    [2]
    RICHARDSON G L. Effect of high solvent radiation exposures on TBP processing of spent LMFBR fuels: HEDL-TME 73-51[R]. Richland, Wash: Hanford Engineering Development Laboratory, 1973.
    [3]
    WATSON S B , RAINEY R H. Modifications of the SEPHIS computer code for calculating the PUREX solvent extraction system: ORNL-TM-5123[R]. America: Oak Ridge National Laboratory, 1975.
    [4]
    WATSON S B, RAINEY R H. User’s guide to the SEPHIS computer code for calculating the THOREX solvent extraction system: ORNL-CSD-TM-70[R]. America: Oak Ridge National Laboratory, 1979.
    [5]
    MITCHELL A D. Use of the SEPHIS-MOD4 program for modeling the PUREX and THOREX solvent extraction processes[J]. Separation Science and Technology, 1981, 16(10): 1299-1319. doi: 10.1080/01496398108058303
    [6]
    GELDARD J F, BEYERLEIN A L. CUSEP—a new mathematical model of pulsed column contactors using the PUREX process[J]. Nuclear Technology, 1989, 85(2): 172-186. doi: 10.13182/NT89-A34239
    [7]
    TACHIMORI S. Extra·M: A computing code system for analysis of the PUREX process with mixer settlers for reprocessing: JAERI 1331[R]. Japan: Japan Atomic Energy Research Institution, 1994.
    [8]
    NAITO M, SUTO T, ASAKAWA K, et al. Mixset-X: A computer code for simulating the PUREX solvent extraction process: JNC TN8400 99-005[R]. Japan: Japan Nuclear Cycle Development Institution, 1999.
    [9]
    GONDA K, FUKUDA S. Calculation code MIXSET for PUREX process: PNCT 841-77-60[R]. Japan: Power Reactor and Nuclear Fuel Development Corporation, 1977.
    [10]
    GONDA K, OKA K, FUKUDA S. Calculation code revised MIXSET for PUREX process: PNCT 841-79-26[R]. Japan: Power Reactor and Nuclear Fuel Development Corporation, 1979
    [11]
    SOREL C, MONTUIR M, BALAGUER C, et al. The PAREX code: a powerful tool to model and simulate solvent extraction operations[C]. Santiago, Chile: Proceedings of the 19th International Solvent Extraction Conference ISEC11, 2011
    [12]
    BISSON J, DINH B, HURON P, et al. PAREX, a numerical code in the service of La Hague plant operations[J]. Procedia Chemistry, 2016, 21: 117-124. doi: 10.1016/j.proche.2016.10.017
    [13]
    何辉,李高亮,陈辉,等. PUREX流程共去污工艺计算机稳态模拟[J]. 原子能科学技术,2008, 42(9): 784-789.
    [14]
    于婷,何辉,洪哲,等. PUREX流程铀钚分离工艺单元数学模型研究[J]. 原子能科学技术,2019, 53(2): 193-199. doi: 10.7538/yzk.2018.youxian.0753
    [15]
    MARCHENKO V I, DVOEGLAZOV K N, VOLK V I. Use of redox reagents for stabilization of Pu and Np valence forms in aqueous reprocessing of spent nuclear fuel: Chemical and technological aspects[J]. Radiochemistry, 2009, 51(4): 329-344. doi: 10.1134/S1066362209040018
    [16]
    汤嘉,郭子方,翁汉钦,等. 基于多级混合澄清槽的PUREX流程的计算模型[J]. 核化学与放射化学,2020, 42(3): 167-173.
    [17]
    兰天,罗方祥,肖松涛,等. 硝酸羟胺还原反萃高浓度钚[J]. 核化学与放射化学,2016, 38(3): 154-158. doi: 10.7538/hhx.2016.38.03.0154
    [18]
    GONDA K, MIYACHI S, FUKUDA S. Mass transfer model of purex process in mixer-settlers[J]. Journal of Nuclear Science and Technology, 1986, 23(5): 472-474. doi: 10.1080/18811248.1986.9735008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (394) PDF downloads(314) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return