Advance Search
Volume 43 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
Liu Zhilong, Li Tongxi, Nie Changhua, Zhan Li, Tang Zhangchun, Liu Jie. Fault Diagnosis Method of Nuclear Gate Valve Based on Characteristic Analysis of Operation Process Variables[J]. Nuclear Power Engineering, 2022, 43(2): 171-174. doi: 10.13832/j.jnpe.2022.02.0171
Citation: Liu Zhilong, Li Tongxi, Nie Changhua, Zhan Li, Tang Zhangchun, Liu Jie. Fault Diagnosis Method of Nuclear Gate Valve Based on Characteristic Analysis of Operation Process Variables[J]. Nuclear Power Engineering, 2022, 43(2): 171-174. doi: 10.13832/j.jnpe.2022.02.0171

Fault Diagnosis Method of Nuclear Gate Valve Based on Characteristic Analysis of Operation Process Variables

doi: 10.13832/j.jnpe.2022.02.0171
  • Received Date: 2021-03-01
  • Rev Recd Date: 2021-07-29
  • Publish Date: 2022-04-02
  • Aiming at the sticking fault of nuclear gate valve, a fault diagnosis method of gate valve based on characteristic analysis of operation process variables is proposed. The operating process of gate valve opening and closing often contains fault characteristics and changing rules. Therefore, this method first uses Shannon entropy to measure the vibration signal power spectrum of gate valve opening and closing process, calculates the mean value of power spectrum entropy as the target process variable, analyzes the characteristic changes of target process variables under the condition of gate valve health and fault degree, and then divides the fault area and non-fault area for gate valve fault diagnosis. Finally, based on the nuclear gate valve experiment, this method is experimentally verified. The results show that this method can effectively diagnose the fault of nuclear gate valve, and has a certain fault prediction ability. Therefore, the use of this method can reduce the probability of nuclear facility accidents caused by the sticking fault of the gate valve, and at the same time, this method can be applied to the fault diagnosis of the gate valve in other fields.

     

  • loading
  • [1]
    杨国峰,胡守印. 模式识别技术在安全级电动阀故障诊断中的应用[J]. 核动力工程,2010, 31(1): 79-82, 87.
    [2]
    易全伟,李光俊. 安全壳喷淋系统地坑吸水管线隔离阀故障分析及处理[J]. 核动力工程,2018, 39(4): 112-115.
    [3]
    熊鹏博,王晓东. 多时域特征与SVM的隔膜泵单向阀故障诊断[J]. 机械科学与技术,2019, 38(4): 538-543.
    [4]
    权凌霄,郭海鑫,盛世伟,等. 采用"GA+LM"优化BP神经网络的电液伺服阀故障诊断[J]. 中国机械工程,2018, 29(5): 505-510. doi: 10.3969/j.issn.1004-132X.2018.05.001
    [5]
    刘志浩,高钦和,牛海龙,等. 基于驱动端电流检测的电磁阀故障诊断研究[J]. 兵工学报,2014, 35(7): 1083-1090. doi: 10.3969/j.issn.1000-1093.2014.07.023
    [6]
    李剑峰,肖明清,唐希浪. 基于线圈缓变失效的电磁阀故障诊断[J]. 热能动力工程,2018, 33(8): 99-107.
    [7]
    郭梦茹,谭泽汉,陈焕新,等. 基于遗传算法和BP神经网络的多联机阀类故障诊断[J]. 制冷学报,2018, 39(2): 119-125. doi: 10.3969/j.issn.0253-4339.2018.02.119
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (280) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return