Advance Search
Volume 43 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Du Peng, Shan Jianqiang, Deng Jian, Liu Yu, Ding Shuhua, Chen Wei, Yuan Peng, Wu Zenghui. Model Development and Transient Analysis of Thermal Stratification Phenomenon in Pool-Type Sodium-Cooled Fast Reactors[J]. Nuclear Power Engineering, 2022, 43(4): 25-30. doi: 10.13832/j.jnpe.2022.04.0025
Citation: Du Peng, Shan Jianqiang, Deng Jian, Liu Yu, Ding Shuhua, Chen Wei, Yuan Peng, Wu Zenghui. Model Development and Transient Analysis of Thermal Stratification Phenomenon in Pool-Type Sodium-Cooled Fast Reactors[J]. Nuclear Power Engineering, 2022, 43(4): 25-30. doi: 10.13832/j.jnpe.2022.04.0025

Model Development and Transient Analysis of Thermal Stratification Phenomenon in Pool-Type Sodium-Cooled Fast Reactors

doi: 10.13832/j.jnpe.2022.04.0025
  • Received Date: 2021-06-06
  • Rev Recd Date: 2021-07-08
  • Publish Date: 2022-08-04
  • In this paper, a three-dimensional (3D) system analysis model is established according to the characteristics of the pool-type sodium-cooled fast reactor, and combined with the evolution mechanism of thermal stratification, the key processing method of accurately simulating thermal stratification is proposed, including energy source term processing, 3D momentum equation convection term processing and 3D space inlet effect processing. On this basis, the developed 3D system analysis model is verified by KALIMER and MONJU thermal stratification experiments. The results show that the model effectively solves the problem of 3D thermal hydraulic analysis of pool-type sodium-cooled fast reactor, realizes the rapid and accurate simulation of the transient change of temperature field in the sodium pool and the evolution process of thermal stratification, and can also determine the maximum position of thermal stress on the surface of pool type structure in the process of thermal stratification, which can provide a reference for the safety design of pool-type fast reactor.

     

  • loading
  • [1]
    MOCHIZUKI H, YAO H. Analysis of thermal stratification in the upper plenum of the “Monju” reactor[J]. Nuclear Engineering and Design, 2014, 270: 48-59. doi: 10.1016/j.nucengdes.2013.12.049
    [2]
    SHOKRI N, NAMIN M M, FARHOUDI J. A three-dimensional non-hydrostatic coupled model for free surface-subsurface variable-density flows[J]. Journal of Contaminant Hydrology, 2018, 216: 38-49. doi: 10.1016/j.jconhyd.2018.08.002
    [3]
    KIMURA N, HAYASHI K, KAMIDE H, et al. Experimental study on flow optimization in upper plenum of reactor vessel for a compact sodium-cooled fast reactor[J]. Nuclear Technology, 2005, 152(2): 210-222. doi: 10.13182/NT05-A3671
    [4]
    TANAKA N, MORIYA S, USHIJIMA S, et al. Prediction method for thermal stratification in a reactor vessel[J]. Nuclear Engineering and Design, 1990, 120(2-3): 395-402. doi: 10.1016/0029-5493(90)90389-F
    [5]
    许义军. 中国实验快堆钠池三维热工水力分析[D]. 北京: 中国原子能科学研究院, 2003.
    [6]
    HOWARD P A, CARBAJO J J. Experimental study of scram transients in generalized liquid-metal fast breeder reactor outlet plenums[J]. Nuclear Technology, 1979, 44(2): 210-220. doi: 10.13182/NT79-A32256
    [7]
    AOKI T, OZAWA M. Thermal stratification study for the MONJU upper plenum code development and comparison with sodium experiment[C]//Proceedings of IAEA-IWGFR Specialists' Meeting on Thermal Stratification in Sodium. Grenoble: IAEA, 1983: 195-204.
    [8]
    隋丹婷. 堆芯上腔三维化的池式快堆系统分析软件开发[D]. 北京: 华北电力大学, 2013.
    [9]
    CHEN J, ZHANG D, QIU S Z, et al. CFD investigation of thermal-hydraulic behaviors in full reactor core for sodium-cooled fast reactor[C]//Proceedings of the 2018 26th International Conference on Nuclear Engineering. London: ASME, 2018.
    [10]
    ALI M Y, WU G W, LIU S Y, et al. CFD analysis of thermal stratification under PLOFA transient in CLEAR-S[J]. Progress in Nuclear Energy, 2019, 115: 21-29. doi: 10.1016/j.pnucene.2019.03.011
    [11]
    VIVEK V, SHARMA A K, BALAJI C. A CFD based approach for thermal hydraulic design of main vessel cooling system of pool type fast reactors[J]. Annals of Nuclear Energy, 2013, 57: 269-279. doi: 10.1016/j.anucene.2013.01.059
    [12]
    NARCISI V, GIANNETTI F, SUBIOLI A, et al. RELAP5-3D three-dimensional analysis based on PHÉNIX dissymmetric transient test[J]. Journal of Nuclear Engineering and Radiation Science, 2020, 6(1): 011301. doi: 10.1115/1.4044847
    [13]
    单建强. 压水堆核电厂瞬态安全数值分析方法[M]. 西安: 西安交通大学出版社, 2016: 179-180.
    [14]
    CHEN Q Y, XU W R. A zero-equation turbulence model for indoor airflow simulation[J]. Energy and Buildings, 1998, 28(2): 137-144. doi: 10.1016/S0378-7788(98)00020-6
    [15]
    LEE D Y, JIN J S, KANG B H. Momentum boundary layer and its influence on the convective heat transfer in porous media[J]. International Journal of Heat and Mass Transfer, 2002, 45(1): 229-233. doi: 10.1016/S0017-9310(01)00115-6
    [16]
    KWON Y M, LEE Y B, CHANG W P. Development of a system analysis code, SSC-K, for inherent safety evaluation of the Korea advanced liquid metal reactor[J]. Nuclear Engineering and Technology, 2001, 33(2): 209-224.
    [17]
    TAMAGNO P, VAN ROOIJEN W F G. Uncertainty analysis of the prototype FBR Monju with the JENDL-4.0 nuclear data set[J]. Annals of Nuclear Energy, 2013, 51: 257-273. doi: 10.1016/j.anucene.2012.06.039
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (330) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return