Citation: | Wang Yanpei, Liu Zhenhai, Qi Feipeng, Tang Changbing, Zhang Kun, Zhou Yi, Wang Peng, Yu Lin. Comparative Validation of Three Dimensional Fuel Rod Fine Simulation Software FUPAC3D and FUPAC[J]. Nuclear Power Engineering, 2022, 43(4): 46-52. doi: 10.13832/j.jnpe.2022.04.0046 |
[1] |
BERNA G A, BEYER G A, DAVIS K L, et al. FRAPCON-3: a computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup: NUREG/CR-6534-Vol. 2-PNNL-11513[R]. Washington: U. S. Nuclear Regulatory Commission, 1997.
|
[2] |
LASSMANN K. TRANSURANUS: a fuel rod analysis code ready for use[J]. Journal of Nuclear Materials, 1992, 188: 295-302. doi: 10.1016/0022-3115(92)90487-6
|
[3] |
ROSSITER G D, COOK P, WESTON R. Isotopic modelling using the ENIGMA-B fuel performance code[R]. Lake Windermere, UK: IAEA, 2000
|
[4] |
GARNIER C, MAILHE P, SONTHEIMER F, et al. Validation of advanced fuel performance COPERNIC3 code on AREVA global database up to 100 GWd/tM[C]//Proceedings of TopFuel 2009, Paris, France: WRFPM, 2009
|
[5] |
SUZUKI M, UDAGAWA Y, SAITOU H. Light water reactor fuel analysis code FEMAXI-7; model and structure: JAEA-Data/Code-2010-035[R]. Tokai, Ibaraki, Japan: Japan Atomic Energy Agency, 2011
|
[6] |
CAYET N, BARON D, BEGUIN S. CYRANO3: EDG’s fuel rod behaviour code presentation and overview of its qualification on HRP and various other experiments[C]//Proceedings of Thermal Performance of High Burn-Up LWR Fuel. Tokyo: Japan Atomic Energy Agency, 1998: 323.
|
[7] |
周毅,陈平,张林,等. 压水堆燃料棒辐照行为模型研究[J]. 核动力工程,2014, 35(S2): 200-202.
|
[8] |
涂晓兰,柴晓明,尹强,等. 燃料棒性能分析软件FUPAC中燃料棒径向功率密度分布模型研发[J]. 核动力工程,2014, 35(S2): 197-199.
|
[9] |
王坤,张坤,邢硕,等. 数值拟合方法评价燃料芯块制造参数对燃料棒性能的影响[J]. 核动力工程,2021, 42(3): 80-84.
|
[10] |
邢硕,张坤,陈平,等. 燃料棒性能分析程序FUPAC V2.0的研发与验证[J]. 原子能科学技术,2021, 55(11): 2048-2053. doi: 10.7538/yzk.2020.youxian.0925
|
[11] |
KHVOSTOV G, MIKITYUK K, ZIMMERMANN M A. A model for fission gas release and gaseous swelling of the uranium dioxide fuel coupled with the FALCON code[J]. Nuclear Engineering and Design, 2011, 241(8): 2983-3007. doi: 10.1016/j.nucengdes.2011.06.020
|
[12] |
VAN UFFELEN P, HALES J, LI W, et al. A review of fuel performance modelling[J]. Journal of Nuclear Materials, 2019, 516: 373-412. doi: 10.1016/j.jnucmat.2018.12.037
|
[13] |
WILLIAMSON R L, GAMBLE K A, PEREZ D M, et al. Validating the BISON fuel performance code to integral LWR experiments[J]. Nuclear Engineering and Design, 2016, 301: 232-244. doi: 10.1016/j.nucengdes.2016.02.020
|
[14] |
HE Y N, CHEN P, WU Y W, et al. Preliminary evaluation of U3Si2-FeCrAl fuel performance in light water reactors through a multi-physics coupled way[J]. Nuclear Engineering and Design, 2018, 328: 27-35. doi: 10.1016/j.nucengdes.2017.12.019
|
[15] |
邓超群,向烽瑞,贺亚男,等. 基于MOOSE平台的棒状燃料元件性能瞬态分析程序开发与验证[J]. 原子能科学技术,2021, 55(8): 1429-1439. doi: 10.7538/yzk.2020.youxian.0607
|
[16] |
邓超群,向烽瑞,贺亚男,等. 基于MOOSE平台的棒状燃料元件性能分析程序开发与验证[J]. 原子能科学技术,2021, 55(7): 1296-1303. doi: 10.7538/yzk.2020.youxian.0515
|
[17] |
WILLIAMSON R L. Enhancing the ABAQUS thermomechanics code to simulate multipellet steady and transient LWR fuel rod behavior[J]. Journal of Nuclear Materials, 2011, 415(1): 74-83. doi: 10.1016/j.jnucmat.2011.05.044
|
[18] |
唐昌兵,焦拥军,陈平,等. 燃料棒辐照-热-力耦合行为的精细化数值模拟研究[J]. 核动力工程,2017, 38(6): 180-184.
|
[19] |
路怀玉,唐昌兵,李垣明,等. 热管堆燃料棒辐照-热-力学行为的数值研究[J]. 冶金管理,2020(5): 38-39.
|