Citation: | Li Xiangyu, Cheng Kun, Tan Sichao, Huang Tao, Yuan Dongdong. Fault Diagnosis Method of Nuclear Power Plant Based on Adaboost Algorithm[J]. Nuclear Power Engineering, 2022, 43(4): 118-125. doi: 10.13832/j.jnpe.2022.04.0118 |
[1] |
HOLMBERG J E, KAHLBOM U. Application of human reliability analysis in the deterministic safety analysis for nuclear power plants[J]. Reliability Engineering & System Safety, 2020, 194: 106371.
|
[2] |
EEM S, CHOI I K, CHA S L, et al. Seismic response correlation coefficient for the structures, systems and components of the Korean nuclear power plant for seismic probabilistic safety assessment[J]. Annals of Nuclear Energy, 2021, 150: 107759. doi: 10.1016/j.anucene.2020.107759
|
[3] |
CHOUDRI M Z. AP1000非能动安全壳冷却系统整合确定论与概率论安全分析[D]. 北京: 华北电力大学(北京), 2019.
|
[4] |
张力,王春波,邹衍华,等. 核电厂安全相关人员行为确定论筛选方法研究[J]. 安全与环境学报,2018, 18(5): 1854-1858.
|
[5] |
黄志超,初永越,李虎伟,等. 风险指引型PSA应用的不确定性分析方法研究[J]. 核科学与工程,2017, 37(5): 830-838. doi: 10.3969/j.issn.0258-0918.2017.05.019
|
[6] |
SONG G S, KIM M C. Mathematical formulation and analytic solutions for uncertainty analysis in probabilistic safety assessment of nuclear power plants[J]. Energies, 2021, 14(4): 929. doi: 10.3390/en14040929
|
[7] |
ČEPIN M. Application of shutdown probabilistic safety assessment[J]. Reliability Engineering & System Safety, 2018, 178: 147-155.
|
[8] |
LEE H, JEONG H, KOO G, et al. Attention recurrent neural network-based severity estimation method for interturn short-circuit fault in permanent magnet synchronous machines[J]. IEEE Transactions on Industrial Electronics, 2021, 68(4): 3445-3453. doi: 10.1109/TIE.2020.2978690
|
[9] |
XING S B, LEI Y G, WANG S H, et al. Distribution-invariant deep belief network for intelligent fault diagnosis of machines under new working conditions[J]. IEEE Transactions on Industrial Electronics, 2021, 68(3): 2617-2625. doi: 10.1109/TIE.2020.2972461
|
[10] |
LI J K, LIN M. Ensemble learning with diversified base models for fault diagnosis in nuclear power plants[J]. Annals of Nuclear Energy, 2021, 158: 108265. doi: 10.1016/j.anucene.2021.108265
|
[11] |
ZHAO Y F, TONG J J, ZHANG L G. Rapid source term prediction in nuclear power plant accidents based on dynamic bayesian networks and probabilistic risk assessment[J]. Annals of Nuclear Energy, 2021, 158: 108217. doi: 10.1016/j.anucene.2021.108217
|
[12] |
RÄTSCH G, ONODA T, MÜLLER K R. Soft margins for AdaBoost[J]. Machine Learning, 2001, 42(3): 287-320. doi: 10.1023/A:1007618119488
|
[13] |
MERLER S, CAPRILE B, FURLANELLO C. Parallelizing AdaBoost by weights dynamics[J]. Computational Statistics & Data Analysis, 2007, 51(5): 2487-2498.
|
[14] |
艾鑫,刘永阔,蒋利平,等. 基于iForest-Adaboost的核电厂一回路故障诊断技术研究[J]. 核动力工程,2020, 41(3): 208-213.
|
[15] |
SRA S, NOWOZIN S, WRIGHT S J. Optimization for machine learning[M]. Cambridge: MIT Press, 2012.
|
[16] |
QI K L, LI Q, LIU W, et al. Qinshan 300MWe NPP full scope simulator upgrade[R]. Vienna: International Atomic Energy Agency, 2006.
|
[17] |
FAN J, UPADHYE S, WORSTER A. Understanding receiver operating characteristic (ROC) curves[J]. Canadian Journal of Emergency Medicine, 2006, 8(1): 19-20. doi: 10.1017/S1481803500013336
|