Advance Search
Volume 43 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Min Yuan, Chen Zhi, Wan Bo, Yang Cheng, Han Wenxing, Yuan Yannan. Research on Fault Prediction of Reactor Power Measurement Circuit Based on Relevance Vector Machine[J]. Nuclear Power Engineering, 2022, 43(4): 223-229. doi: 10.13832/j.jnpe.2022.04.0223
Citation: Min Yuan, Chen Zhi, Wan Bo, Yang Cheng, Han Wenxing, Yuan Yannan. Research on Fault Prediction of Reactor Power Measurement Circuit Based on Relevance Vector Machine[J]. Nuclear Power Engineering, 2022, 43(4): 223-229. doi: 10.13832/j.jnpe.2022.04.0223

Research on Fault Prediction of Reactor Power Measurement Circuit Based on Relevance Vector Machine

doi: 10.13832/j.jnpe.2022.04.0223
  • Received Date: 2022-03-15
  • Rev Recd Date: 2022-04-01
  • Publish Date: 2022-08-04
  • In order to improve the supportability and maintainability of the nuclear measuring device, taking the reactor power measurement amplifier circuit as the object, this paper predicts the typical faults of the circuit through the multi-kernel relevance vector machine model based on quantum particle swarm optimization algorithm. From the pulse response signal of the power measurement amplifier circuit, the feature information is extracted by the wavelet packet decomposition method, and the Euclidean distance between the feature and the normal state feature of the circuit is calculated as the fault degree indicator of the circuit. Multi-kernel relevance vector machine is selected to establish circuit fault prediction model. The influence of kernel function type and parameter optimization algorithm of relevance vector machine model on the prediction effect of the model is analyzed. The research results show that the multi-kernel relevance vector machine model optimized by quantum particle swarm algorithm has better prediction accuracy for the future running state of the circuit, and can accurately predict the changing law of the fault degree of the circuit.

     

  • loading
  • [1]
    ZHAO S, CHEN S W, YANG F, et al. A composite failure precursor for condition monitoring and remaining useful life prediction of discrete power devices[J]. IEEE Transactions on Industrial Informatics, 2021, 17(1): 688-698. doi: 10.1109/TII.2020.2991454
    [2]
    吕克洪,程先哲,李华康,等. 电子设备故障预测与健康管理技术发展新动态[J]. 航空学报,2019, 40(11): 13-24.
    [3]
    孟晨,杨华晖,王成,等. 数据驱动的武器系统电子元部件级故障诊断研究综述[J]. 系统工程与电子技术,2021, 43(2): 574-583. doi: 10.12305/j.issn.1001-506X.2021.02.33
    [4]
    LONG Y W, LUO H W, ZHI Y, et al. Remaining useful life estimation of solder joints using an ARMA model optimized by genetic algorithm[C]//2018 19th International Conference on Electronic Packaging Technology. Shanghai: IEEE, 2018: 1108-1111.
    [5]
    郝春燕,魏海坤,张侃健,等. 基于神经网络的模拟电路故障诊断方法[J]. 工业控制计算机,2018, 31(6): 63-65. doi: 10.3969/j.issn.1001-182X.2018.06.028
    [6]
    闫理跃,王厚军,刘震. 一种结合噪声辅助技术和现场数据的模拟电路实时可靠度预测方法[J]. 兵工学报,2019, 40(2): 326-333.
    [7]
    RATHNAPRIYA S, MANIKANDAN V. Remaining useful life prediction of analog circuit using improved unscented particle filter[J]. Journal of Electronic Testing, 2020, 36(2): 169-181. doi: 10.1007/s10836-020-05870-9
    [8]
    TIPPING M E, SMOLA A. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1(3): 211-244.
    [9]
    BISHOP C M. Pattern recognition and machine learning[M]. New York: Springer, 2006: 345-346.
    [10]
    WANG J J, FENG G J, YI C, et al. Electronic circuit fault diagnosis based on an ACO-RVM classifier with a new nonlinearly mixed kernel function[C]//2019 Prognostics and System Health Management Conference. Paris: IEEE, 2019: 332-337.
    [11]
    SUN J, XU W B, FENG B. A global search strategy of quantum-behaved particle swarm optimization[C]//IEEE Conference on Cybernetics and Intelligent Systems, 2004. Singapore: IEEE, 2004: 111-116.
    [12]
    PRISACARU A, GROMALA P, HAN B, et al. Degradation estimation and prediction of electronic packages using data-driven approach[J]. IEEE Transactions on Industrial Electronics, 2022, 69(3): 2996-3006. doi: 10.1109/TIE.2021.3068681
    [13]
    HANNAMAN G W, WILKINSON C D. Evaluating the effects of aging on electronic instrument and control circuit boards and components in nuclear power plants: 1011709[R]. Washington, DC: U. S. Department of Energy, 2005.
    [14]
    LIU Z B, LIU T M, HAN J W, et al. Signal model-based fault coding for diagnostics and prognostics of analog electronic circuits[J]. IEEE Transactions on Industrial Electronics, 2017, 64(1): 605-614. doi: 10.1109/TIE.2016.2599142
    [15]
    刘立芳,杨海霞,齐小刚. 基于线性判别分析的时频域特征提取算法[J]. 系统工程与电子技术,2019, 41(10): 2184-2190. doi: 10.3969/j.issn.1001-506X.2019.10.05
    [16]
    时艳玲,刘子鹏,张学良,等. 基于EMD能量占比的海面漂浮小目标特征检测[J]. 系统工程与电子技术,2021, 43(2): 300-310. doi: 10.12305/j.issn.1001-506X.2021.02.03
    [17]
    GROSSMANN A, MORLET J. Decomposition of hardy functions into square integrable wavelets of constant shape[J]. SIAM Journal on Mathematical Analysis, 1984, 15(4): 723-736. doi: 10.1137/0515056
    [18]
    肖迎群,何怡刚. 基于小波分形分析和脊波网络的模拟电路故障诊断方法[J]. 电工技术学报,2011, 26(11): 105-114.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (241) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return