Advance Search
Volume 43 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
Chen Guoyu, Li Minghai, Zou Yang, Xu Hongjie. Transient Characteristics Analysis of Single Parameter Disturbance in Molten Salt Reactor[J]. Nuclear Power Engineering, 2022, 43(5): 12-19. doi: 10.13832/j.jnpe.2022.05.0012
Citation: Chen Guoyu, Li Minghai, Zou Yang, Xu Hongjie. Transient Characteristics Analysis of Single Parameter Disturbance in Molten Salt Reactor[J]. Nuclear Power Engineering, 2022, 43(5): 12-19. doi: 10.13832/j.jnpe.2022.05.0012

Transient Characteristics Analysis of Single Parameter Disturbance in Molten Salt Reactor

doi: 10.13832/j.jnpe.2022.05.0012
  • Received Date: 2021-10-28
  • Rev Recd Date: 2021-11-29
  • Publish Date: 2022-10-12
  • As an innovative reactor, the thermal-hydraulic characteristics of molten salt reactor are very different from other reactors. Disturbance transient analysis helps to fundamentally understand its safety characteristics and operating conditions. In order to study the transient characteristics of molten salt reactor operation, this study takes liquid fuel molten salt reactor (MSR) as the research object, and uses the modified RELAP5/MOD4.0 program to carry out disturbance transient analysis under steady-state operation conditions. Disturbance variables include mass flow rate of primary circuit, mass flow rate of secondary circuit, mass flow rate of air radiator and inlet air temperature of air radiator. Main operating parameters, such as power, core inlet and outlet temperature, secondary circuit inlet and outlet temperature, and characteristic time, are analyzed. The results show that the final state of the MSR under various disturbance transients tends to be stable without severe transient changes, which is an intuitive characterization of its inherent stability characteristics. According to the change of power and temperature under disturbance, the control method of power and different circuit temperature is proposed.

     

  • loading
  • [1]
    ABRAM T, ION S. Generation-IV nuclear power: a review of the state of the science[J]. Energy Policy, 2008, 36(12): 4323-4330. doi: 10.1016/j.enpol.2008.09.059
    [2]
    LEBLANC D. Molten salt reactors: a new beginning for an old idea[J]. Nuclear Engineering and Design, 2010, 240(6): 1644-1656. doi: 10.1016/j.nucengdes.2009.12.033
    [3]
    BETTIS E S, SCHROEDER R W, CRISTY G A, et al. The aircraft reactor experiment—design and construction[J]. Nuclear Science and Engineering, 1957, 2(6): 804-825. doi: 10.13182/NSE57-A35495
    [4]
    MACPHERSON H G. The molten salt reactor adventure[J]. Nuclear Science and Engineering, 1985, 90(4): 374-380. doi: 10.13182/NSE90-374
    [5]
    秋穗正,张大林,苏光辉,等. 新概念熔盐堆的固有安全性及相关关键问题研究[J]. 原子能科学技术,2009, 43(S1): 64-75.
    [6]
    MATHIEU L, HEUER D, BRISSOT R, et al. The thorium molten salt reactor: moving on from the MSBR[J]. Progress in Nuclear Energy, 2006, 48(7): 664-679. doi: 10.1016/j.pnucene.2006.07.005
    [7]
    蔡翔舟,戴志敏,徐洪杰. 钍基熔盐堆核能系统[J]. 物理,2016, 45(9): 578-590. doi: 10.7693/wl20160904
    [8]
    FORSBERG C. The advanced high-temperature reactor: high-temperature fuel, liquid salt coolant, liquid-metal-reactor plant[J]. Progress in Nuclear Energy, 2005, 47(1-4): 32-43. doi: 10.1016/j.pnucene.2005.05.002
    [9]
    SOHAL M S, EBNER M A, SABHARWALL P, et al. Engineering database of liquid salt thermophysical and thermochemical properties[R]. Idaho Falls: Idaho National Laboratory, 2010.
    [10]
    LI M H, ZHANG J, ZOU Y, et al. Disturbed transient analysis with stable operation mode of TMSR-SF1[C]//16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16). Chicago, 2015: 6959-6968
    [11]
    MOCHIZUKI H. Neutronics and thermal-hydraulics coupling analysis using the FLUENT code and the RELAP5-3D code for a molten salt fast reactor[J]. Nuclear Engineering and Design, 2020, 368: 110793. doi: 10.1016/j.nucengdes.2020.110793
    [12]
    王成龙,田文喜,苏光辉,等. 熔盐堆新型非能动余热排出系统中高温热管的数值分析[J]. 核动力工程,2014, 35(1): 32-35.
    [13]
    YU Y, LIU D, SONG X M, et al. Research and development of a transient thermal–hydraulic code for system safety analysis of sodium cooled fast reactor[J]. Annals of Nuclear Energy, 2021, 152: 107841. doi: 10.1016/j.anucene.2020.107841
    [14]
    SHEN C, ZHANG X L, WANG C, et al. Transient safety analysis of M2LFR-1000 reactor using ATHLET[J]. Nuclear Engineering and Technology, 2019, 51(1): 116-124. doi: 10.1016/j.net.2018.08.011
    [15]
    张洁,李明海,何龙,等. 1 GW固态燃料熔盐堆运行瞬态分析[J]. 核技术,2016, 39(10): 89-94.
    [16]
    阮见. 熔盐堆系统瞬态分析程序开发[D]. 上海: 中国科学院大学(中国科学院上海应用物理研究所), 2018.
    [17]
    SLOAN S M, SCHULTZ R R, WILSON G E. RELAP5/MOD3 code manual[J]. Nureg/cr Egg, 1998
    [18]
    程懋松, 施承斌. RELAP5-TMSR-Ver: 1.2. 0修改说明书[R]. 中国科学院先进核能创新研究院, 2017
    [19]
    施承斌,程懋松,刘桂民. RELAP5应用于液态燃料熔盐堆的扩展及验证[J]. 核动力工程,2016, 37(3): 16-20. doi: 10.13832/j.jnpe.2016.03.0016
    [20]
    姜淑颖,程懋松,戴志敏,等. RELAP/SCDAPSIM/MOD4.0程序的FHR应用扩展及验证[J]. 核动力工程,2016, 37(6): 33-36. doi: 10.13832/j.jnpe.2016.06.0033
    [21]
    SHI C B, CHENG M S, LIU G M. Development and application of a system analysis code for liquid fueled molten salt reactors based on RELAP5 code[J]. Nuclear Engineering and Design, 2016, 305: 378-388. doi: 10.1016/j.nucengdes.2016.05.034
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article Metrics

    Article views (213) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return