Citation: | Chen Guoyu, Li Minghai, Zou Yang, Xu Hongjie. Transient Characteristics Analysis of Single Parameter Disturbance in Molten Salt Reactor[J]. Nuclear Power Engineering, 2022, 43(5): 12-19. doi: 10.13832/j.jnpe.2022.05.0012 |
[1] |
ABRAM T, ION S. Generation-IV nuclear power: a review of the state of the science[J]. Energy Policy, 2008, 36(12): 4323-4330. doi: 10.1016/j.enpol.2008.09.059
|
[2] |
LEBLANC D. Molten salt reactors: a new beginning for an old idea[J]. Nuclear Engineering and Design, 2010, 240(6): 1644-1656. doi: 10.1016/j.nucengdes.2009.12.033
|
[3] |
BETTIS E S, SCHROEDER R W, CRISTY G A, et al. The aircraft reactor experiment—design and construction[J]. Nuclear Science and Engineering, 1957, 2(6): 804-825. doi: 10.13182/NSE57-A35495
|
[4] |
MACPHERSON H G. The molten salt reactor adventure[J]. Nuclear Science and Engineering, 1985, 90(4): 374-380. doi: 10.13182/NSE90-374
|
[5] |
秋穗正,张大林,苏光辉,等. 新概念熔盐堆的固有安全性及相关关键问题研究[J]. 原子能科学技术,2009, 43(S1): 64-75.
|
[6] |
MATHIEU L, HEUER D, BRISSOT R, et al. The thorium molten salt reactor: moving on from the MSBR[J]. Progress in Nuclear Energy, 2006, 48(7): 664-679. doi: 10.1016/j.pnucene.2006.07.005
|
[7] |
蔡翔舟,戴志敏,徐洪杰. 钍基熔盐堆核能系统[J]. 物理,2016, 45(9): 578-590. doi: 10.7693/wl20160904
|
[8] |
FORSBERG C. The advanced high-temperature reactor: high-temperature fuel, liquid salt coolant, liquid-metal-reactor plant[J]. Progress in Nuclear Energy, 2005, 47(1-4): 32-43. doi: 10.1016/j.pnucene.2005.05.002
|
[9] |
SOHAL M S, EBNER M A, SABHARWALL P, et al. Engineering database of liquid salt thermophysical and thermochemical properties[R]. Idaho Falls: Idaho National Laboratory, 2010.
|
[10] |
LI M H, ZHANG J, ZOU Y, et al. Disturbed transient analysis with stable operation mode of TMSR-SF1[C]//16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16). Chicago, 2015: 6959-6968
|
[11] |
MOCHIZUKI H. Neutronics and thermal-hydraulics coupling analysis using the FLUENT code and the RELAP5-3D code for a molten salt fast reactor[J]. Nuclear Engineering and Design, 2020, 368: 110793. doi: 10.1016/j.nucengdes.2020.110793
|
[12] |
王成龙,田文喜,苏光辉,等. 熔盐堆新型非能动余热排出系统中高温热管的数值分析[J]. 核动力工程,2014, 35(1): 32-35.
|
[13] |
YU Y, LIU D, SONG X M, et al. Research and development of a transient thermal–hydraulic code for system safety analysis of sodium cooled fast reactor[J]. Annals of Nuclear Energy, 2021, 152: 107841. doi: 10.1016/j.anucene.2020.107841
|
[14] |
SHEN C, ZHANG X L, WANG C, et al. Transient safety analysis of M2LFR-1000 reactor using ATHLET[J]. Nuclear Engineering and Technology, 2019, 51(1): 116-124. doi: 10.1016/j.net.2018.08.011
|
[15] |
张洁,李明海,何龙,等. 1 GW固态燃料熔盐堆运行瞬态分析[J]. 核技术,2016, 39(10): 89-94.
|
[16] |
阮见. 熔盐堆系统瞬态分析程序开发[D]. 上海: 中国科学院大学(中国科学院上海应用物理研究所), 2018.
|
[17] |
SLOAN S M, SCHULTZ R R, WILSON G E. RELAP5/MOD3 code manual[J]. Nureg/cr Egg, 1998
|
[18] |
程懋松, 施承斌. RELAP5-TMSR-Ver: 1.2. 0修改说明书[R]. 中国科学院先进核能创新研究院, 2017
|
[19] |
施承斌,程懋松,刘桂民. RELAP5应用于液态燃料熔盐堆的扩展及验证[J]. 核动力工程,2016, 37(3): 16-20. doi: 10.13832/j.jnpe.2016.03.0016
|
[20] |
姜淑颖,程懋松,戴志敏,等. RELAP/SCDAPSIM/MOD4.0程序的FHR应用扩展及验证[J]. 核动力工程,2016, 37(6): 33-36. doi: 10.13832/j.jnpe.2016.06.0033
|
[21] |
SHI C B, CHENG M S, LIU G M. Development and application of a system analysis code for liquid fueled molten salt reactors based on RELAP5 code[J]. Nuclear Engineering and Design, 2016, 305: 378-388. doi: 10.1016/j.nucengdes.2016.05.034
|