Advance Search
Volume 43 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
Liu Xiuting, Huang Yanping, Wang Yangle, Liu Guangxu, Zhuo Wenbin, Li Xinyu. Analysis and Research of Coupled Brayton Cycle System for Small Fluorine Salt Cooled High Temperature Reactor[J]. Nuclear Power Engineering, 2022, 43(5): 20-26. doi: 10.13832/j.jnpe.2022.05.0020
Citation: Liu Xiuting, Huang Yanping, Wang Yangle, Liu Guangxu, Zhuo Wenbin, Li Xinyu. Analysis and Research of Coupled Brayton Cycle System for Small Fluorine Salt Cooled High Temperature Reactor[J]. Nuclear Power Engineering, 2022, 43(5): 20-26. doi: 10.13832/j.jnpe.2022.05.0020

Analysis and Research of Coupled Brayton Cycle System for Small Fluorine Salt Cooled High Temperature Reactor

doi: 10.13832/j.jnpe.2022.05.0020
  • Received Date: 2021-10-26
  • Rev Recd Date: 2022-01-12
  • Publish Date: 2022-10-12
  • In order to meet the energy conversion requirements of small fluoride cooled high temperature reactor (FHR), an efficient, compact and water-free cooling power conversion system is developed. In this paper, the thermoelectric conversion efficiency, exergy efficiency and exergy loss distribution of supercritical carbon dioxide (SCO2), air, argon (Ar), nitrogen (N2) and xenon (Xe) in different Brayton cycle configurations are compared. It is found that SCO2 Brayton cycle has the highest thermoelectric conversion efficiency and exergy efficiency compared with other working medium cycles, and its structure is more compact, easy to miniaturization and modularization, and has more advantages in coupling with small fluorine salt cooled high temperature reactor; the configuration of SCO2 Brayton cycle is optimized, and the optimal cycle configuration mode matching the small fluoride cooled high-temperature reactor is obtained, which constitutes an inherently safe modular small fluoride cooled high-temperature reactor thermoelectric conversion system, providing a new research idea for energy utilization in the west.

     

  • loading
  • [1]
    DELPECH S. Molten salts for nuclear applications[M]//LANTELME F, GROULT H. Molten Salts Chemistry. Amsterdam: Elsevier, 2013: 497-520.
    [2]
    INGERSOLL D T. Status of preconceptual design of the advanced high-temperature reactor (AHTR), ORNL/TM-2004/104 TRN: US0604044 [R]. Oak Ridge: Oak Ridge National Lab, 2004.
    [3]
    BARDET P, BLANDFORD E, FRATONI M, et al. Design, analysis and development of the modular PB-AHTR[C]//International Conference on Advances in Nuclear Power Plants. Anaheim: ICAPP, 2008: 161-178.
    [4]
    GREENE S R, GEHIN J C, HOLCOMB D E, et al. Pre-conceptual design of a fluoride-salt-cooled small modular advanced high-temperature reactor (SmAHTR), ORNL/TM-2010/199 [R]. Oak Ridge: Oak Ridge National Laboratory, 2010.
    [5]
    ILAS D, HOLCOMB D E, GEHIN J. SmAHTR-CTC neutronic design, 1159410 [R]. Oak Ridge: Oak Ridge National Lab, 2014.
    [6]
    阮见,邹杨,李明海,等. 氟盐冷却高温堆空气布雷顿循环系统瞬态行为研究[J]. 核动力工程,2017, 38(4): 22-26. doi: 10.13832/j.jnpe.2017.04.0022
    [7]
    秦浩,王成龙,张大林,等. 氟盐冷却高温堆氚输运特性数值研究[J]. 原子能科学技术,2018, 52(3): 434-440. doi: 10.7538/yzk.2017.youxian.0290
    [8]
    李友荣, 吴双应, 肖兰, 等. 热经济学理论及应用[M]. 北京: 科学出版社, 2020
    [9]
    刘秀婷,张昊春,尹德状,等. 基于SCO2布雷顿循环的双模式核热推进系统性能分析[J]. 核动力工程,2020, 41(S2): 102-107. doi: 10.13832/j.jnpe.2020.S2.0102
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article Metrics

    Article views (319) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return