Advance Search
Volume 43 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
Liu Shuai, Chen Cong, Liu Li, Gu Hanyang, Zhang Jiarong. Experimental Study on Flow Patterns and Void Fraction of Non-swirling and Swirling Gas-liquid Two-phase Flow Based on WMS[J]. Nuclear Power Engineering, 2022, 43(5): 43-50. doi: 10.13832/j.jnpe.2022.05.0043
Citation: Liu Shuai, Chen Cong, Liu Li, Gu Hanyang, Zhang Jiarong. Experimental Study on Flow Patterns and Void Fraction of Non-swirling and Swirling Gas-liquid Two-phase Flow Based on WMS[J]. Nuclear Power Engineering, 2022, 43(5): 43-50. doi: 10.13832/j.jnpe.2022.05.0043

Experimental Study on Flow Patterns and Void Fraction of Non-swirling and Swirling Gas-liquid Two-phase Flow Based on WMS

doi: 10.13832/j.jnpe.2022.05.0043
  • Received Date: 2021-09-01
  • Rev Recd Date: 2022-07-19
  • Publish Date: 2022-10-12
  • In order to explore the flow pattern characteristics and the spatial-temporal distribution characteristics of void fraction before and after the gas-liquid two-phase flow pattern changes from non-swirling state to swirling state, based on the high-speed camera and the self-developed wire mesh sensor (WMS) measurement technology, the spatial-temporal evolution characteristics of the phase state of the air-water two-phase flow under the action of a swirling device in a horizontal tube with an inner diameter of 30 mm are studied visually. Under the centrifugal force induced by the swirler, there are obvious bubble coalescence behavior and droplet deposition phenomena in the flow field. Among them, the bubble flow will be transformed into swirling gas column flow, the plug flow into swirling intermittent flow, the slug flow into swirling annular flow, and the annular flow into swirling ribbon flow; compared with slug flow and annular flow, the fluctuation amplitude of the section average void fraction of bubbly flow and plug flow at the swirler outlet is significantly weakened, but the centrifugal force field does not significantly change the section average void fraction of each flow pattern before and after the transition from non-swirling state to swirling state.

     

  • loading
  • [1]
    KONG R, KIM S. Characterization of horizontal air-water two-phase flow[J]. Nuclear Engineering and Design, 2017, 312: 266-276. doi: 10.1016/j.nucengdes.2016.06.016
    [2]
    SETYAWAN A, INDARTO, DEENDARLIANTO. Experimental investigations of the circumferential liquid film distribution of air-water annular two-phase flow in a horizontal pipe[J]. Experimental Thermal and Fluid Science, 2017, 85: 95-118. doi: 10.1016/j.expthermflusci.2017.02.026
    [3]
    DINARYANTO O, PRAYITNO Y A K, MAJID A I, et al. Experimental investigation on the initiation and flow development of gas-liquid slug two-phase flow in a horizontal pipe[J]. Experimental Thermal and Fluid Science, 2017, 81: 93-108. doi: 10.1016/j.expthermflusci.2016.10.013
    [4]
    LIU L, YING B B, GU H Y, et al. Experimental study on the separation performance of a full-scale SG steam-water separator[J]. Annals of Nuclear Energy, 2020, 141: 107330. doi: 10.1016/j.anucene.2020.107330
    [5]
    徐晗,路铭超,熊珍琴,等. 疏水孔对旋叶分离器分离效率影响研究[J]. 核动力工程,2020, 41(4): 70-75.
    [6]
    刘妍,柯炳正,王先元,等. 两级旋风式汽水分离器的分离性能研究[J]. 核动力工程,2020, 41(2): 114-119.
    [7]
    CAI B W, WANG J J, SUN L C, et al. Experimental study and numerical optimization on a vane-type separator for bubble separation in TMSR[J]. Progress in Nuclear Energy, 2014, 74: 1-13. doi: 10.1016/j.pnucene.2014.02.007
    [8]
    LIU S, YANG L L, ZHANG D, et al. Separation characteristics of the gas and liquid phases in a vane-type swirling flow field[J]. International Journal of Multiphase Flow, 2018, 107: 131-145. doi: 10.1016/j.ijmultiphaseflow.2018.05.025
    [9]
    刘雯,程小莉,陈勇,等. 管内螺旋导流板引发的气液两相旋流场[J]. 机械工程学报,2013, 49(22): 164-169.
    [10]
    MANGLIK R M, BERGLES A E. Characterization of twisted-tape-induced helical swirl flows for enhancement of forced convective heat transfer in single-phase and two-phase flows[J]. Journal of Thermal Science and Engineering Applications, 2013, 5(2): 021010. doi: 10.1115/1.4023935
    [11]
    ROITBERG E, SHEMER L, BARNEA D. Measurements of cross-sectional instantaneous phase distribution in gas-liquid pipe flow[J]. Experimental Thermal and Fluid Science, 2007, 31(8): 867-875. doi: 10.1016/j.expthermflusci.2006.09.002
    [12]
    白博峰,郭烈锦,赵亮. 汽(气)液两相流流型在线识别的研究进展[J]. 力学进展,2001, 31(3): 437-446. doi: 10.3321/j.issn:1000-0992.2001.03.010
    [13]
    LIU L, BAI B F. Flow regime identification of swirling gas-liquid flow with image processing technique and neural networks[J]. Chemical Engineering Science, 2019, 199: 588-601. doi: 10.1016/j.ces.2019.01.037
    [14]
    徐海淞,王季,熊进标,等. 基于两相CFD方法的竖直圆管环状流预测研究[J]. 核动力工程,2019, 40(6): 7-12.
    [15]
    LUCAS D, KREPPER E, PRASSER H M. Development of co-current air-water flow in a vertical pipe[J]. International Journal of Multiphase Flow, 2005, 31(12): 1304-1328. doi: 10.1016/j.ijmultiphaseflow.2005.07.004
    [16]
    DA SILVA M J, SCHLEICHER E, HAMPEL U. Capacitance wire-mesh sensor for fast measurement of phase fraction distributions[J]. Measurement Science and Technology, 2007, 18(7): 2245-2251. doi: 10.1088/0957-0233/18/7/059
    [17]
    PRASSER H M, HÄFELI R. Signal response of wire-mesh sensors to an idealized bubbly flow[J]. Nuclear Engineering and Design, 2018, 336: 3-14. doi: 10.1016/j.nucengdes.2017.04.016
    [18]
    KANAI T, FURUYA M, ARAI T, et al. Three-dimensional phasic velocity determination methods with wire-mesh sensor[J]. International Journal of Multiphase Flow, 2012, 46: 75-86. doi: 10.1016/j.ijmultiphaseflow.2012.06.006
    [19]
    PRASSER H M, SCHOLZ D, ZIPPE C. Bubble size measurement using wire-mesh sensors[J]. Flow Measurement and Instrumentation, 2001, 12(4): 299-312. doi: 10.1016/S0955-5986(00)00046-7
    [20]
    ABDULKADIR M, HERNANDEZ-PEREZ V, LOWNDES I S, et al. Experimental study of the hydrodynamic behaviour of slug flow in a horizontal pipe[J]. Chemical Engineering Science, 2016, 156: 147-161. doi: 10.1016/j.ces.2016.09.015
    [21]
    ROCHA A D, BANNWART A C, GANZAROLLI M M. Numerical and experimental study of an axially induced swirling pipe flow[J]. International Journal of Heat and Fluid Flow, 2015, 53: 81-90. doi: 10.1016/j.ijheatfluidflow.2015.02.003
    [22]
    GU H Y, GUO L J. Modeling of bubble shape in horizontal and inclined tubes[J]. Progress in Nuclear Energy, 2016, 89: 88-101. doi: 10.1016/j.pnucene.2016.02.011
    [23]
    CONTE M G, HEGDE G A, DA SILVA M J, et al. Characterization of slug initiation for horizontal air-water two-phase flow[J]. Experimental Thermal and Fluid Science, 2017, 87: 80-92. doi: 10.1016/j.expthermflusci.2017.04.023
    [24]
    THAKER J, BANERJEE J. On intermittent flow characteristics of gas–liquid two-phase flow[J]. Nuclear Engineering and Design, 2016, 310: 363-377. doi: 10.1016/j.nucengdes.2016.10.020
    [25]
    CHEN B M, HO K, ABAKR Y A, et al. Fluid dynamics and heat transfer investigations of swirling decaying flow in an annular pipe part 2: fluid flow[J]. International Journal of Heat and Mass Transfer, 2016, 97: 1012-1028. doi: 10.1016/j.ijheatmasstransfer.2016.01.069
    [26]
    LIU W, LV X F, BAI B F. Axial development of air-water annular flow with swirl in a vertical pipe[J]. International Journal of Multiphase Flow, 2020, 124: 103165. doi: 10.1016/j.ijmultiphaseflow.2019.103165
    [27]
    PRASSER H M, BÖTTGER A, ZSCHAU J. A new electrode-mesh tomograph for gas-liquid flows[J]. Flow Measurement and Instrumentation, 1998, 9(2): 111-119. doi: 10.1016/S0955-5986(98)00015-6
    [28]
    LIU L, WANG K, BAI B F. Experimental study on flow patterns and transition criteria for vertical swirling gas-liquid flow[J]. International Journal of Multiphase Flow, 2020, 122: 103113. doi: 10.1016/j.ijmultiphaseflow.2019.103113
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views (238) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return