Citation: | Zhou Jun, Qiu Shaoyu, Qiu Risheng, Zeng Wen, Wang Hao, Shu Ming, Yang Canxiang. Effect of Thermal Aging Temperature on Precipitation Behavior of Laves Phase and Impact Performance in High Si Content Ferritic Martensitic Steels[J]. Nuclear Power Engineering, 2022, 43(5): 126-132. doi: 10.13832/j.jnpe.2022.05.0126 |
[1] |
PANAIT C G, BENDICK W, FUCHSMANN A, et al. Study of the microstructure of the Grade 91 steel after more than 100, 000 h of creep exposure at 600 C[J]. International Journal of Pressure Vessels and Piping, 2010, 87(6): 326-335. doi: 10.1016/j.ijpvp.2010.03.017
|
[2] |
AITKALIYEVA A, HE L, WEN H, et al. 7- Irradiation effects in generation IV nuclear reactor materials[M]//YVON P. Structural Materials for Generation IV Nuclear Reactors. Duxford: Woodhead Publishing, 2017: 253-283.
|
[3] |
BUCKTHORPE D. 1- introduction to generation IV nuclear reactor[M]//YVON P. Structural Materials for Generation IV Nuclear Reactors. Duxford: Woodhead Publishing, 2017: 1-22.
|
[4] |
BARBIER F, BENAMATI G, FAZIO C, et al. Compatibility tests of steels in flowing liquid lead-bismuth[J]. Journal of Nuclear Materials, 2001, 295(2-3): 149-156. doi: 10.1016/S0022-3115(01)00570-0
|
[5] |
MÜLLER G, HEINZEL A, KONYS J, et al. Results of steel corrosion tests in flowing liquid Pb/Bi at 420-600 C after 2000 hours[J]. Journal of Nuclear Materials, 2002, 301(1): 40-46. doi: 10.1016/S0022-3115(01)00725-5
|
[6] |
KIPELOVA A, KAIBYSHEV R, BELYAKOV A, et al. Microstructure evolution in a 3%Co modified P911 heat resistant steel under tempering and creep conditions[J]. Materials Science and Engineering:A, 2011, 528(3): 1280-1286. doi: 10.1016/j.msea.2010.10.006
|
[7] |
HOSOI Y, WADE N, KUNIMITSU S, et al. Precipitation behavior of Laves phase and its effect on toughness of 9Cr-2Mo ferritic-martensitic steel[J]. Journal of Nuclear Materials, 1986, 141-143: 461-467. doi: 10.1016/S0022-3115(86)80083-6
|
[8] |
HU P, YAN W, SHA W, et al. Microstructure evolution of a 10Cr heat-resistant steel during high temperature creep[J]. Journal of Materials Science & Technology, 2011, 27(4): 344-351.
|
[9] |
ISIK M I, KOSTKA A, EGGELER G. On the nucleation of Laves phase particles during high-temperature exposure and creep of tempered martensite ferritic steels[J]. Acta Materialia, 2014, 81: 230-240. doi: 10.1016/j.actamat.2014.08.008
|
[10] |
ISIK M I, KOSTKA A, YARDLEY V A, et al. The nucleation of Mo-rich Laves phase particles adjacent to M23C6 micrograin boundary carbides in 12% Cr tempered martensite ferritic steels[J]. Acta Materialia, 2015, 90: 94-104. doi: 10.1016/j.actamat.2015.01.027
|
[11] |
AGHAJANI A, RICHTER F, SOMSEN C, et al. On the formation and growth of Mo-rich Laves phase particles during long-term creep of a 12% chromium tempered martensite ferritic steel[J]. Scripta Materialia, 2009, 61(11): 1068-1071. doi: 10.1016/j.scriptamat.2009.08.031
|
[12] |
DIMMLER G, WEINERT P, KOZESCHNIK E, et al. Quantification of the Laves phase in advanced 9-12% Cr steels using a standard SEM[J]. Materials Characterization, 2003, 51(5): 341-352. doi: 10.1016/j.matchar.2004.02.003
|
[13] |
LI M M, CHEN W Y. Microstructure-based prediction of thermal aging strength reduction factors for grade 91 ferritic-martensitic steel[J]. Materials Science and Engineering:A, 2020, 798: 140116. doi: 10.1016/j.msea.2020.140116
|
[14] |
XU Y T, NIE Y H, WANG M J, et al. The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging[J]. Acta Materialia, 2017, 131: 110-122. doi: 10.1016/j.actamat.2017.03.045
|
[15] |
TKACHEV E, BELYAKOV A, KAIBYSHEV R. Creep strength breakdown and microstructure in a 9%Cr steel with high B and Low N contents[J]. Materials Science and Engineering:A, 2020, 772: 138821. doi: 10.1016/j.msea.2019.138821
|
[16] |
CHEN S H, RONG L J. Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel[J]. Journal of Nuclear Materials, 2015, 459: 13-19. doi: 10.1016/j.jnucmat.2015.01.004
|
[17] |
PHILIPPE T, VOORHEES P W. Ostwald ripening in multicomponent alloys[J]. Acta Materialia, 2013, 61(11): 4237-4244. doi: 10.1016/j.actamat.2013.03.049
|
[18] |
AGHAJANI A, SOMSEN C, EGGELER G. On the effect of long-term creep on the microstructure of a 12% Chromium tempered martensite ferritic steel[J]. Acta Materialia, 2009, 57(17): 5093-5106. doi: 10.1016/j.actamat.2009.07.010
|
[19] |
XU Y T, LI W, WANG M J, et al. Nano-sized MX carbonitrides contribute to the stability of mechanical properties of martensite ferritic steel in the later stages of long-term aging[J]. Acta Materialia, 2019, 175: 148-159. doi: 10.1016/j.actamat.2019.06.012
|
[20] |
WANG W, XU G, SONG L L. Long-term stability of precipitated phases in CLAM steel during thermal aging[J]. Journal of Nuclear Materials, 2019, 521: 56-62. doi: 10.1016/j.jnucmat.2019.04.034
|