Citation: | Wang Wenhui, Wan Anping, Deng Chaojun, Gong Zhipeng, Zhang Hongliang, Ye Yanghan, Wang Pengfei, Liu Canxian, Li Yuezhang. Reliability Evaluation Method of Bolts of Reactor Internals in High-neutron-fluence-rate Region Based on XGBoost[J]. Nuclear Power Engineering, 2022, 43(5): 154-162. doi: 10.13832/j.jnpe.2022.05.0154 |
[1] |
杨武. 辐照促进应力腐蚀破裂研究的进展[J]. 材料保护,1994, 27(2): 1-4.
|
[2] |
ISHIHARA T. Corrosion failures and related research subjects in light water reactor power plants[J]. Zairyo-to-Kankyo, 1990, 39(11): 621-629.
|
[3] |
赵和安. 我国核电发展及其与紧固件的关系[J]. 兵器装备工程学报,2018, 39(4): 131-137. doi: 10.11809/bqzbgcxb2018.04.028
|
[4] |
段远刚,赵晓刚,喻济兵. 压水堆堆内构件寿命管理中的关键问题[J]. 核动力工程,2003, 24(5): 401-404. doi: 10.3969/j.issn.0258-0926.2003.05.001
|
[5] |
谢航,葛亮,蔡家藩. 核电站堆内构件围板螺栓的超声检测[J]. 无损检测,2020, 42(10): 49-51. doi: 10.11973/wsjc202010010
|
[6] |
段远刚,许斌,唐传宝. 围板连接螺栓的辐照促进应力腐蚀裂纹研究[J]. 核动力工程,2007, 28(2): 62-65. doi: 10.3969/j.issn.0258-0926.2007.02.014
|
[7] |
邓平,孙晨,彭群家,等. 堆芯结构材料辐照促进应力腐蚀开裂研究现状[J]. 中国腐蚀与防护学报,2015, 35(6): 479-487.
|
[8] |
李守彬,孔晨光,范岩成. 核电厂围板螺栓裂纹的失效分析与超声检测[J]. 无损检测,2019, 41(1): 58-60. doi: 10.11973/wsjc201901014
|
[9] |
WAS G S. Role of irradiation in stress corrosion cracking[M]//SICKAFUS K E, KOTOMIN E A, UBERUAGA B P. Radiation Effects in Solids. Dordrecht: Springer, 2007: 421-447.
|
[10] |
刘增瑞,徐杰,辛正高. “华龙一号”核反应堆围板和成形板组件的安装[J]. 装备机械,2018, 2(3): 16-21. doi: 10.3969/j.issn.1662-0555.2018.03.004
|
[11] |
张振声,孙立斌,王海涛. HTR石墨堆内构件应力评价概率论和确定论方法比较[J]. 核动力工程,2011, 32(S1): 57-60.
|
[12] |
PHAM X T T, HO T H. Using boosting algorithms to predict bank failure: an untold story[J]. International Review of Economics & Finance, 2021, 76: 40-54.
|
[13] |
ZHU M L. Construction of quantization strategy based on random forest and XGBoost[C]//Proceedings of 2020 Conference on Artificial Intelligence and Healthcare. Taiyuan: ACM, 2020: 5-9.
|
[14] |
LI C, CHEN Z Y, LIU J B, et al. Power load forecasting based on the combined model of LSTM and XGBoost[C]//Proceedings of 2019 the International Conference on Pattern Recognition and Artificial Intelligence. Wenzhou: ACM, 2019: 46-51.
|
[15] |
CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 785-794.
|
[16] |
CHOI H S, KIM S, OH J E, et al. XGBoost-based instantaneous drowsiness detection framework using multitaper spectral information of electroencephalography[C]//Proceedings of 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics. Washington: ACM, 2018: 111-121.
|
[17] |
ZHANG D, CHEN H D, ZULFIQAR H, et al. Developing and applying machine learning-based methods in special function protein identification[J]. Computational and Mathematical Methods in Medicine, 2021, 2021: 6664362.
|
[18] |
陈梅. 秦山核电库存控制探讨[J]. 企业技术开发,2015, 34(24): 170,172.
|
[19] |
International Atomic Energy Agency. Assessment and management of ageing of major nuclear power plant components important to safety: PWR vessel internals: 2007 update[R]. Vienna: International Atomic Energy Agency, 2007.
|
[20] |
CHEN W, LEI X X, CHAKRABORTTY R, et al. Evaluation of different boosting ensemble machine learning models and novel deep learning and boosting framework for head-cut gully erosion susceptibility[J]. Journal of Environmental Management, 2021, 284: 112015. doi: 10.1016/j.jenvman.2021.112015
|