Advance Search
Volume 43 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
Zhang Ming, Ge Yunzheng, Zhang Shoujie, Liu Weimin. Research for Spent Fuel Pool Self-safe Cooling Technology after Serious Accident[J]. Nuclear Power Engineering, 2022, 43(5): 181-187. doi: 10.13832/j.jnpe.2022.05.0181
Citation: Zhang Ming, Ge Yunzheng, Zhang Shoujie, Liu Weimin. Research for Spent Fuel Pool Self-safe Cooling Technology after Serious Accident[J]. Nuclear Power Engineering, 2022, 43(5): 181-187. doi: 10.13832/j.jnpe.2022.05.0181

Research for Spent Fuel Pool Self-safe Cooling Technology after Serious Accident

doi: 10.13832/j.jnpe.2022.05.0181
  • Received Date: 2021-09-08
  • Accepted Date: 2021-12-21
  • Rev Recd Date: 2021-11-04
  • Publish Date: 2022-10-12
  • In view of the loss of internal and external power supplies after a serious accident in a nuclear power plant, a scheme for long-term self-safe cooling of the spent fuel pool is proposed by extracting the waste heat of the spent fuel pool for power generation. Based on the thermal process analysis, working medium selection, thermal analysis of key equipment, and system design research based on the waste heat of the spent fuel pool, the feasibility of using the waste heat of the spent fuel pool to achieve long-term self-safe cooling of the spent fuel pool after a serious accident is discussed. The research shows that according to the working environment and the system output power after the serious accident of the nuclear power plant, the waste heat self-generating system of the spent fuel pool can be constructed by the Shangyuan cycle or the Guohai cycle. For both in-service reactor types and new reactor types, the system can ensure the continuous removal of waste heat from the spent fuel pool, meeting the requirement that the temperature of the spent fuel pool is lower than 80°C, thereby realizing self-safe cooling of the spent fuel pool.

     

  • loading
  • [1]
    高峰. 压水堆核电厂核岛设计-第三卷-核岛工艺系统和布置设计[M]. 北京: 中国原子能出版社, 2010: 163-170.
    [2]
    苏林森. 900MW压水堆核电站系统与设备[M]. 北京: 中国原子能出版社, 2005: 163-170.
    [3]
    李大树,陈荣旗,张理. 海洋温差能发电热力循环技术进展[J]. 工业加热,2016, 45(4): 6-9,13. doi: 10.3969/j.issn.1002-1639.2016.04.002
    [4]
    TAKAHASHI P, TRENKA A. Ocean thermal energy conversion[M]. Chichester: John Wiley & Sons, 1996: 32-35.
    [5]
    UEHARA H. The present status and future of ocean thermal energy conversion[J]. International Journal of Solar Energy, 1995, 16(4): 217-231. doi: 10.1080/01425919508914278
    [6]
    刘伟民. 15kW温差能发电装置研究及试验[J]. 中国科技成果,2014(10): 17. doi: 10.3772/j.issn.1009-5659.2014.10.005
    [7]
    赵钦新,王宇峰,王学斌,等. 我国余热利用现状与技术进展[J]. 工业锅炉,2009(5): 8-15. doi: 10.3969/j.issn.1004-8774.2009.05.002
    [8]
    邓立生,黄宏宇,何兆红,等. 有机朗肯循环的研究进展[J]. 新能源进展,2014, 2(3): 180-189. doi: 10.3969/j.issn.2095-560X.2014.03.003
    [9]
    吴春旭,林礼群,王幸,等. 闭式海洋温差能发电系统的工质研究[J]. 太阳能学报,2016, 37(4): 1064-1070. doi: 10.3969/j.issn.0254-0096.2016.04.040
    [10]
    陈凤云. 海洋温差能发电装置热力性能与综合利用研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (248) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return